20140914 【 动态规划 】 51nod 1183 . 编辑距离

6 篇文章 0 订阅
6 篇文章 0 订阅

提一个问题
  徐华杰  向下
1183 . 编辑距离
基准时间限制:1 秒 空间限制:65536 KB 分值: 0
编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。
例如将kitten一字转成sitting:
sitten (k->s)
sittin (e->i)
sitting (->g)
所以kitten和sitting的编辑距离是3。俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念。
给出两个字符串a,b,求a和b的编辑距离。
Input
第1行:字符串a(a的长度 <= 1000)。
第2行:字符串b(b的长度 <= 1000)。
Output
输出a和b的编辑距离
Input 示例
kitten
sitting
Output 示例
3
请选择语言:     允许其他人查看提交的代码
编号 相关问题 分值
1006最长公共子序列Lcs 0
1277字符串中的最大值 40
1088最长回文子串 5
1089最长回文子串 V2 160
1157全是1的最大子矩阵 40





来自 WiKi 的模板

整數 Levenshtein距離(字符 str1[1..lenStr1], 字符 str2[1..lenStr2])
   宣告 int d[0..lenStr1, 0..lenStr2]
   宣告 int i, j, cost
 
   對於 i 等於  0  lenStr1
       d[i, 0] := i
   對於 j 等於  0  lenStr2
       d[0, j] := j
 
   對於 i 等於  1  lenStr1
       對於 j 等於  1  lenStr2
            str1[i] = str2[j]  cost := 0
                                否則 cost := 1
           d[i, j] := 最小值(
                                d[i-1, j  ] + 1,     // 刪除
                                d[i  , j-1] + 1,     // 插入
                                d[i-1, j-1] + cost   // 替換
                            )
 
   返回 d[lenStr1, lenStr2]



实际上 与DNA比较类似。。





#include <iostream>
#include <string>
#include <algorithm>
using namespace std;
#define MAXN 1010
string s, e;
int f[MAXN][MAXN];
int main(){
    cin>>s>>e;
    for(int i=0; i<s.size(); i++)   f[i][0] = i;
    for(int j=0; j<e.size(); j++)   f[0][j] = j;
    for(int i=1; i<=s.size(); i++){
        for(int j=1; j<=e.size(); j++){
            int c = (s[i-1]!=e[j-1]);
            f[i][j] = min( f[i-1][j-1]+c,
                min( f[i-1][j]+1, f[i][j-1]+1 ) );
        }
    }
    cout<< f[s.size()][e.size()] <<endl;
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值