53. Maximum Subarray

方法1: dynamic programming

思路:

因为是连续位置的数列和,只有两种情况,遍历到nums[i]的时候只能选择取或不取。取的话curSum = curSum + nums[i] ,或者以 i 为起点重新开始累计nums[i],这两种中的较大值就是以当前点为截止能取到的最大和,记录为cur并继续前进。每次移动更新全局最大变量result。

Complexity

Time complex: O(n)
Space complexity: O(1)

易错点:

  1. initial
class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        if (nums.size() == 0) return 0;
        int n = nums.size();
        int result = INT_MIN;
        int curSum = 0;
        
        for (int i = 0; i < n; i++){
            curSum = max(curSum + nums[i], nums[i]);
            result = max(result, curSum);
        }
        return result;
    }
};

方法2: divide and conquer

思路:

用分治的做法需要找出1. 左半边的最大和, 2. 右半边的最大和,3. 跨越左边和右边的最大和= 左半边以mid - 1为止的连续和 + 右半边以mid + 1 为止的连续和 + nums[mid]。注意3不能从1、2 直接相加,因为1,2,的最大和有可能不与mid接壤。必须在算好1、2后再滚动一次左连续统计最大,再滚动统计右连续最大。

易错点:

不要漏掉中间仅一个数即为最大和的情况

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        if (nums.size() == 0) return 0;
        return subHelper(nums, 0, (int)nums.size() - 1);   
    }
    
    int subHelper(vector<int> & nums, int left, int right){
        if (left >= right) return nums[left];
        
        int mid = left + (right - left) / 2;
        
        int lmax = subHelper(nums, left, mid - 1) ;
        int rmax = subHelper(nums, mid + 1, right);
        
        int t = nums[mid];
        int mmax = t;
        for (int i = mid - 1; i >= left; i--){
            t += nums[i];
            mmax = max(mmax, t);
        }
        t = mmax;
        for (int i = mid + 1; i <= right; i++){
            t += nums[i];
            mmax = max(mmax, t);
        }
        return max(mmax, max(lmax, rmax));
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值