785. Is Graph Bipartite?


Given an undirected graph, return true if and only if it is bipartite.

Recall that a graph is bipartite if we can split it’s set of nodes into two independent subsets A and B such that every edge in the graph has one node in A and another node in B.

The graph is given in the following form: graph[i] is a list of indexes j for which the edge between nodes i and j exists. Each node is an integer between 0 and graph.length - 1. There are no self edges or parallel edges: graph[i] does not contain i, and it doesn’t contain any element twice.

Example 1:

Input: [[1,3], [0,2], [1,3], [0,2]]
Output: true
Explanation: 
The graph looks like this:
0----1
|    |
|    |
3----2
We can divide the vertices into two groups: {0, 2} and {1, 3}.

Example 2:

Input: [[1,2,3], [0,2], [0,1,3], [0,2]]
Output: false
Explanation: 
The graph looks like this:
0----1
| \  |
|  \ |
3----2
We cannot find a way to divide the set of nodes into two independent subsets.

Note:

  1. graph will have length in range [1, 100].
  2. graph[i] will contain integers in range [0, graph.length - 1].
  3. graph[i] will not contain i or duplicate values.
  4. The graph is undirected: if any element j is in graph[i], then i will be in graph[j].

方法1: bfs

grandyang: http://www.cnblogs.com/grandyang/p/8519566.html

思路:

Time complexity: O(E + V)
Space complexity: O(E)

class Solution {
public:
    bool isBipartite(vector<vector<int>>& graph) {
        if (graph.empty()) true;
        
        vector<int> colors(graph.size());
        for (int i = 0; i < graph.size(); i++) {
            if (colors[i]) continue;
            colors[i] = 1;
            int color = 1;
            queue<int> q;
            q.push(i);
            while (!q.empty()) {
                int top = q.front();
                q.pop();
                for (int j: graph[top]) {
                    if (!colors[j]) {
                        colors[j] = -colors[top];
                        q.push(j);
                    }
                    else {
                        if (colors[j] != -colors[top]) return false;
                    }
                }
            }
        }
        return true;
    }
};

方法2: dfs

Time complexity: O(E + V)
Space complexity: O(E)

class Solution {
public:
    bool isBipartite(vector<vector<int>>& graph) {
        int n = graph.size();
        unordered_map<int, int> hash;
        for (int i = 0; i < n; i++) {
            if (hash[i] == 0 && !isValid(i, graph, hash, 1)) return false;
        }
        return true;
    }
    
    bool isValid(int i, vector<vector<int>> & graph, unordered_map<int, int> & hash, int color) {
        if (hash[i] != 0) {
            return hash[i] == color;
        }
        hash[i] = color;
        for (int j: graph[i]) {
            if (hash[j] == hash[i]) return false;
            else if (hash[j] == 0) {
                if (!isValid(j, graph, hash, -color)) return false;
            }
        }
        return true;
    }
};

class Solution {
public:
    bool isBipartite(vector<vector<int>>& graph) {
        int n = graph.size();
        unordered_map<int, int> hash;
        for (int i = 0; i < n; i++) {
            if (hash[i] == 0) {
                hash[i] = 1;
                if (!isValid(i, graph, hash, 1)) return false;
            }
        }
        return true;
    }
    
    bool isValid(int i, vector<vector<int>> & graph, unordered_map<int, int> & hash, int color) {
        for (int j: graph[i]) {
            if (hash[j] == hash[i]) return false;
            else if (hash[j] == 0) {
                hash[j] = -color;
                if (!isValid(j, graph, hash, -color)) return false;
            }
        }
        return true;
    }
};

方法3:union find

思路:

首先查每一个节点是否和自己的临界节点一样,一样就返回false。如果没有一样的,就把所有临界点union起来。

易错点:

  1. 查空:有的节点是没有临界的

Complexity

Time complexity:O(E+V)
Space complexity: O(E).

class Solution {
public:
    bool isBipartite(vector<vector<int>>& graph) {
        int n = graph.size();
        vector<int> root(n, 0);
        for (int i = 0; i < n; i++) root[i] = i;
        for (int i = 0; i < n; i++) {
            if (graph[i].empty()) continue;
            int par1 = findHelper(root, i);
            int par0 = findHelper(root, graph[i][0]);
            for (int k = 1; k < graph[i].size(); k++) {                
                int par2 = findHelper(root, graph[i][k]);
                if (par1 == par2) return false;
                root[par2] = par0;
            }
        }
        return true;
    }
    
    int findHelper2(vector<int>& root, int i) {
        return root[i] == i ? i : findHelper(root, root[i]);
    }
    
    int findHelper(vector<int>& root, int i) {
        while (i != root[i]) {
            i = root[i];
        }
        return i;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值