语义相似度度量方法解析
在自然语言处理领域,语义相似度的度量至关重要,它有助于计算机理解人类语言的含义,进而实现更智能的语言交互。本文将详细介绍几种语义相似度度量方法,包括混合方法、光谱相似度度量以及一种新颖的光谱相似度度量方法,并探讨其实际应用中的挑战。
1. 混合方法
混合方法旨在克服基于上下文和基于知识的方法的局限性,通过将两者结合到同一模型中。具体有以下两种实现方式:
- 先使用基于上下文的方法进行近似聚类,然后使用基于知识的方法重新定位离群点并优化聚类。
- 根据两个术语在字典定义中共享单词的数量,计算它们之间的共享信息量,并结合WordNet中相关概念的注释进行扩展。
2. 光谱相似度度量
光谱相似度为人类提供了一种更自然的感知相似度的方式,尤其适用于定量和定性形容词,以及方式和频率副词。它指的是两个术语在描述同一特征的所有可能单词的光谱上的含义接近程度。
例如,对于描述热度的定性形容词“hot”(热)、“cold”(冷)和“burning”(灼热),大多数人会认为“burning”和“hot”的含义比“cold”和“hot”更接近,即 $sim(burning, hot) > sim(cold, hot)$,其中 $sim$ 表示光谱语义相似度,且在这种情况下与所考虑单词在光谱上的语义距离成反比。
这种语义相似度度量对于基于词语计算(CWW)和感知计算至关重要,因为人类的感知最好用光谱形容词和副词来描述。然而,该领域的研究并不活跃,现有的处理形容词或副词之间相似度的方法有限。这些方法通常依赖于分析单词与名词之间的联系,利用名词之间的关系,而不是直接考虑形容词和副词在光谱表示中的
订阅专栏 解锁全文
5

被折叠的 条评论
为什么被折叠?



