37、量子系统中的时间相关微扰理论与跃迁概率

量子系统中的时间相关微扰理论与跃迁概率

1. 二态系统的跃迁概率

在量子系统中,二态系统是一个基础且重要的模型。当二态系统受到谐波微扰时,系统会在两个状态之间以拉比频率 $\omega_R$ 振荡。根据概率守恒,有如下关系:
$P_{2\rightarrow1} = 1 - |c_2 (t)|^2 = \cos^2 (\omega_Rt) + (\frac{\delta}{2\omega_R})^2 \sin^2 (\omega_Rt)$

这个方程表明系统在两个状态之间振荡。对于共振情况,即 $\delta = 0$ 时,概率会在 0 和 1 之间翻转;而在非共振情况下,非零的失谐会减弱 $P_{1\rightarrow2}$ 的振幅,使得上能级永远不会被完全占据,相应地,下能级也不会被耗尽。

当考虑在 $t = 0$ 时刻开启的恒定微扰时,这实际上是一个时间相关的问题,因为微扰是一个阶跃函数。通过对谐波微扰的微分方程进行处理,令 $\omega = 0$,可以得到:
$i\hbar\dot{c} 1 (t) = \hat{W} {11}c_1 (t) + \hat{W} {12}e^{-i\omega_0t}c_2 (t)$
$i\hbar\dot{c}_2 (t) = \hat{W}
{12}^{\dagger}e^{i\omega_0t}c_1 (t) + \hat{W}_{22}c_2 (t)$

假设解的形式为 $c_1 (t) = Ae^{-i\omega t}$ 和 $c_2 (t) = Be^{-i(\omega - \omega_0)t}$,代入上述方程并求解久期方程,可

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
先展示下效果 https://pan.quark.cn/s/a4b39357ea24 本项目是本人参加BAT等其他公司电话、现场面试之后总结出来的针对Java面试的知识点或真题,每个点或题目都是在面试中被问过的。 除开知识点,一定要准备好以下套路: 个人介绍,需要准备一个1分钟的介绍,包括学习经历、工作经历、项目经历、个人优势、一句话总结。 一定要自己背得滚瓜烂熟,张口就来 抽象概念,当面试官问你是如何理解多线程的时候,你要知道从定义、来源、实现、问题、优化、应用方面系统性地回答 项目强化,至少知识点的比例是五五开,所以必须针对简历中的两个以上的项目,形成包括【架构和实现细节】,【正常流程和异常流程的处理】,【难点+坑+复盘优化】三位一体的组合拳 压力练习,面试的时候难免紧张,可能会严重影响发挥,通过平时多找机会参交流分享,或找人做压力面试来改善 表达练习,表达能力非常影响在面试中的表现,能否简练地将答案告诉面试官,可以通过给自己讲解的方式刻意练习 重点针对,面试官会针对简历提问,所以请针对简历上写的所有技术点进行重点准备 Java基础 JVM原理 集合 多线程 IO 问题排查 Web框架、数据库 Spring MySQL Redis 通用基础 操作系统 网络通信协议 排序算法 常用设计模式 从URL到看到网页的过程 分布式 CAP理论 锁 事务 消息队列 协调器 ID生成方式 一致性hash 限流 微服务 微服务介绍 服务发现 API网关 服务容错保护 服务配置中心 算法 数组-快速排序-第k大个数 数组-对撞指针-最大蓄水 数组-滑动窗口-最小连续子数组 数组-归并排序-合并有序数组 数组-顺时针打印矩形 数组-24点游戏 链表-链表反转-链表相加 链表-...
在量子物理中,计算能级跃迁率是研究原子、分子和凝聚态系统的重要任务之一。为了高效地完成此类计算,研究人员通常会借助功能强大的量子物理软件包。这些软件基于量子力学原理,能够处理包括偶极跃迁矩阵元、能级结构、波函数耦合以及高阶修正项在内的多种关键参数。 以下是一些常用的量子物理软件,它们支持跃迁率的计算或相关分析: ### 量子化学原子物理方向 - **Quantum ESPRESSO** 是一套广泛用于固体材料电子结构计算的开源软件包,支持密度泛函理论(DFT)计算。它可用于计算原子和分子体系的电子跃迁矩阵元,并结合跃迁频率估算跃迁率[^1]。 - **Gaussian** 是一款商业化的量子化学软件,具备强大的多体微扰理论(如CIS、TD-DFT)模块,可以用于激发态跃迁偶极矩的计算,从而进一步求得跃迁概率[^2]。 - **Molcas** 和 **MOLPRO** 提供了高精度的多参考配置相互作用(MR-CI)方法,适合处理具有复杂电子结构的体系,特别适用于涉及精细和超精细结构的跃迁问题[^3]。 ### 原子光物理方向 - **ARC (Alkali Rydberg Calculator)** 是一个专为碱金属原子设计的 Python 工具包,能够快速计算里德堡态的跃迁矩阵元和跃迁率,非常适合超精细跃迁的研究[^4]。 - **QuTiP (Quantum Toolbox in Python)** 虽然主要用于开放量子系统的动力学模拟,但也可以通过构造哈密顿量和耗散算符来模拟跃迁过程并计算跃迁速率。 ### 凝聚态固态量子系统方向 - **Kwant** 是一个用于量子输运计算的 Python 包,适用于低维纳米结构中的电子跃迁问题,可电磁场耦合模型结合以模拟光致跃迁过程。 - **TBTK (The Toolkit for Quantum Mechanics on Temporal and Kinetic basis)** 支持紧束缚模型下的量子态演化跃迁计算,适用于固态量子比特的设计分析。 ### 示例代码:使用 ARC 计算碱金属原子的跃迁偶极矩 ```python from arc import * alkali_atom = AlkaliAtom(5) # 选择铷原子(原子序数为5) dipole_moment = alkali_atom.getDipoleMatrixElement( n=5, l=0, j=0.5, # 初始态 n_prime=6, l_prime=1, j_prime=1.5, # 终态 m_j=0.5 # 磁量子数 ) print(f"跃迁偶极矩: {dipole_moment} a.u.") ``` 上述代码展示了如何利用 ARC 工具箱计算特定跃迁路径上的偶极矩阵元,进而用于跃迁率 $ A_{ul} $ 的计算。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值