38、量子物理中的时间相关微扰与原子辐射相互作用

量子物理中的时间相关微扰与原子辐射相互作用

1. 费米黄金规则

在量子物理的研究中,我们常常会遇到时间相关微扰的问题。通过一系列的推导,我们得到了如下重要的积分结果:
[
\int_{-\infty}^{\infty} \frac{\sin^2\left(\frac{(\omega - \omega_{fi}’)t}{2}\right)}{\left(\frac{(\omega - \omega_{fi}’)t}{2}\right)^2} dE_f’ = \frac{\hbar^2}{t} \int_{-\infty}^{\infty} \frac{\sin^2 x}{x^2} dx = \frac{2\pi\hbar}{t}
]
由此得出了从初态 (i) 到末态 (f) 的一级近似跃迁概率 (P_{i \to f}^{(1)}) 的表达式:
[
P_{i \to f}^{(1)} = \frac{2\pi t}{\hbar} |\hat{W} {fi}|^2 \rho_f(E_f)
]
这一方程被称为费米黄金规则。我们更关注的是跃迁速率(单位时间内的跃迁概率),用 (w
{if}) 表示。对上述跃迁概率表达式求导,可得跃迁速率的表达式:
[
w_{if} = \frac{dP_{i \to f}}{dt} = \frac{2\pi}{\hbar} |\hat{W} {fi}|^2 \rho_f(E_f)
]
不过,这一表达式的有效性依赖于两个假设条件:
- 时间 (t) 要足够长,使得 (\frac{4\pi\hbar}{t}) 远小于态密度 (\rho_f

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值