再读LBF论文——Face Alignment at 3000 FPS via Regressing Local Binary Features

LBF是由张少阳等人于2014年提出的,其核心思想是:通过随机森林学习出对形状回归最有用的局部二值特征,然后使用线性回归来完成关键点的坐标预测。

论文地址为:https://openaccess.thecvf.com/content_cvpr_2014/papers/Ren_Face_Alignment_at_2014_CVPR_paper.pdf

核心步骤如下:

1、初始化

  • 对每张训练图像,用一个初始形状(通常是平均人脸)作为起点

2、特征提取

  • 在当前估计的形状周围,为每个关键点划分一个局部区域(像素差特征域)。

  • 在这个局部区域内,随机生成大量的“像素差”候选特征(例如,随机在区域内取两个点,计算其灰度差值)

  • 使用随机森林(Random Forest) 来学习筛选这些候选特征。随机森林中的每一棵树会根据像素差特征和当前形状与真实形状的残差,学习如何分裂。最终,训练好的随机森林会将输入的图像块映射为一个稀疏的二值特征向

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值