LBF是由张少阳等人于2014年提出的,其核心思想是:通过随机森林学习出对形状回归最有用的局部二值特征,然后使用线性回归来完成关键点的坐标预测。
论文地址为:https://openaccess.thecvf.com/content_cvpr_2014/papers/Ren_Face_Alignment_at_2014_CVPR_paper.pdf
核心步骤如下:
1、初始化
-
对每张训练图像,用一个初始形状(通常是平均人脸)作为起点
2、特征提取
-
在当前估计的形状周围,为每个关键点划分一个局部区域(像素差特征域)。

-
在这个局部区域内,随机生成大量的“像素差”候选特征(例如,随机在区域内取两个点,计算其灰度差值)
-
使用随机森林(Random Forest) 来学习筛选这些候选特征。随机森林中的每一棵树会根据像素差特征和当前形状与真实形状的残差,学习如何分裂。最终,训练好的随机森林会将输入的图像块映射为一个稀疏的二值特征向

最低0.47元/天 解锁文章
4479

被折叠的 条评论
为什么被折叠?



