tf.cast()函数使用

本文详细介绍了TensorFlow中的tf.cast()函数,包括其作用、参数解释和示例,展示了如何将int32转换为float32。同时列出了TensorFlow常用的数据类型,并提供了一个实际操作的代码片段。
摘要由CSDN通过智能技术生成

tf.cast()函数的作用是执行 tensorflow 中张量数据类型转换,比如读入的图片如果是int8类型的,一般在要在训练前把图像的数据格式转换为float32。

cast定义:

cast(x, dtype, name=None)

    第一个参数 x:   待转换的数据(张量)
    第二个参数 dtype: 目标数据类型
    第三个参数 name: 可选参数,定义操作的名称


int32转换为float32:

    import tensorflow as tf
     
    t1 = tf.Variable([1,2,3,4,5])
    t2 = tf.cast(t1,dtype=tf.float32)
     
    print 't1: {}'.format(t1)
    print 't2: {}'.format(t2)
     
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        sess.run(t2)
        print t2.eval()
        # print(sess.run(t2))

输出:

    t1: <tf.Variable 'Variable:0' shape=(5,) dtype=int32_ref>
    t2: Tensor("Cast:0", shape=(5,), dtype=float32)
    [ 1.  2.  3.  4.  5.]


tensorflow中的数据类型列表:

数据类型    Python 类型    描述
DT_FLOAT    tf.float32    32 位浮点数.
DT_DOUBLE    tf.float64    64 位浮点数.
DT_INT64    tf.int64    64 位有符号整型.
DT_INT32    tf.int32    32 位有符号整型.
DT_INT16    tf.int16    16 位有符号整型.
DT_INT8    tf.int8    8 位有符号整型.
DT_UINT8    tf.uint8    8 位无符号整型.
DT_STRING    tf.string    可变长度的字节数组.每一个张量元素都是一个字节数组.
DT_BOOL    tf.bool    布尔型.
DT_COMPLEX64    tf.complex64    由两个32位浮点数组成的复数:实数和虚数.
DT_QINT32    tf.qint32    用于量化Ops的32位有符号整型.
DT_QINT8    tf.qint8    用于量化Ops的8位有符号整型.
DT_QUINT8    tf.quint8    用于量化Ops的8位无符号整型.
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值