反卷积操作Conv2DTranspose

  • 上采样(Upsample)

       在CNN网络中,输入图像通过卷积操作提取特征后,输出的尺寸常会变小,而有时我们需要将图像恢复到原来的尺寸以便进行进一步的计算(比如:图像的语义分割),那么我们需要实现图像由小分辨率到大分辨率的映射的操作,叫做上采样(Upsample)。

上采样有多种方法,比如最近邻插值(Nearest neighbor interpolation)、双线性插值(Bi-linear interpolation)等,反卷积也是上采样的一种方法。反卷积,也叫转置卷积,它并不是正向卷积的完全逆过程,它不能完全的恢复输入矩阵的数据,只能恢复输入矩阵的大小。

      反卷积操作就是卷积操作的不完全逆过程,反卷积的数学原理网上有很多文章,我们这里就不做描述了,有兴趣的小伙伴可以网上参考一下其他博文。我们这里做一下tensorflow2的Conv2DTranspose操作的解释,以便小伙伴做上采样时候可以快速实现。

     那么,我们开始Conv2DTranspose的使用介绍,首先看一下它的函数原型:

layers.Conv2DTranspose(
    filters,
    kernel_size,
    strides=(1, 1),
    padding='valid',
    output_padding=None,
    data_format=None,
    dilation_rate=(1, 1),
    activation=None,
    use_bias=True,
    kernel_initializer='glorot_uniform',
    bias_initializer='zeros',
    kernel_regularizer=None,
    bias_regularizer=None,
    activity_regularizer=None,
    kernel_constraint=None,
    bias_constraint=None,
    **kwargs,
)
Docstring:     
Transposed convolution layer (sometimes called Deconvolution).

参数:

  • filters:整数,输出空间的维数(即卷积中的滤波器数).
  • kernel_size:一个元组或2个正整数的列表,指定过滤器的空间维度;可以是单个整数,以指定所有空间维度的相同值.
  • strides:
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值