构建并评价分类模型
- 使用sklearn 估计器构建支持向量机(SVM)模型
其实现的过程:
训练集(训练样本)通过 分类算法 建立分类模型 得到训练规则,然后根据分类模型测试,再将给出测试集和待测集 进行测试。
#使用sklearn 估计器构建SVM模型
import numpy as np
from sklearn.datasets import load_breast_cancer
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
cancer=load_breast_cancer()
cancer_data=cancer['data']
cancer_target=cancer['target']
cancer_names=cancer['feature_names']
#将数据集划分为训练集、测试集
cancer_data_train,cancer_data_test,cancer_target_train,cancer_target_test=\
train_test_split(cancer_data,cancer_target,test_size=0.2,random_state=22)
#数据标准化
stdScaler=StandardScaler().fit(cancer_data_train)
cancer_trainStd=stdScaler.transform(cancer_data_train)
cancer_testStd=stdScaler.transform(cancer_data_test)
#建立SVM模型
svm=SVC().fit(cancer_trainSt