扩展欧几里德定理
对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整 数对 x,y ,使得 gcd(a,b)=ax+by。
ax + by = c 可转化为 ax + by = gcd(a, b)
ax1 + by1 = gcd(a, b)
bx2 + (a % b) y2 = gcd(b , a%b)
根据欧几里得定理 gcd(a,b) = gcd(b, a%b)
所以
ax1 + by1 = bx2 + (a%b)y2
a%b = a - (a / b) * b
代入得 ax1 + by1 = bx2 + (a - (a/b) * b) *y2
观察恒等式得 x1 = y2 , y1 = x2 - (a/b)*y2
由于不断的递归,构造方程式的a%b最终会等于0,所以会求到 bx2 = gcd(b, 0) 的解 ,由于恒等,可以求得一个x1,y1的解。
于是可以根据x2,y2的一个解,x2 = 1, y2 = 0 ,可以求得x1,y1;
int exGcd(int a, int b, int &x, int &y)
{
if(b == 0)
{
x = 1; // 此处为x2 ,y2
y = 0;
}
int r = exGcd(b, a % b, x, y);
int t = x;
x = y;
y = t - a / b * y; // 此处为x1,y1,即函数参数为x1,y1,扩展欧几里得返回一个特解
return r;
}
x = x1 * c / gcd(a,b), y = y1 * c /gcd(a,b)
求得 ax +by = c的解
x = x0 + b / gcd(a,b) *k
y = y0 - a/ gcd(a,b) *k
于是讨论x的取值符合题意即可