ARIMA模型是一种常用的时间序列预测模型,全称为自回归积分滑动平均模型(Autoregressive Integrated Moving Average model)。下面是一个使用MATLAB进行ARIMA模型预测的基本示例。请注意,这是一个基础示例,实际应用中可能需要更复杂的数据预处理和模型调整。
% 假设你有一个名为'timeSeriesData'的时间序列数据向量
% 首先,我们需要导入或创建这个时间序列数据
% 例如,这里我们简单地创建一个随机的时间序列数据
rng('default'); % 为了结果的可复现性
timeSeriesData = randn(1, 100); % 生成一个包含100个随机数的向量
% 使用MATLAB的内置函数fitarima来拟合ARIMA模型
% 我们假设ARIMA模型的阶数为(2, 1, 1),这只是一个示例,实际中你需要通过一些方法(如AIC准则)来确定最佳的阶数
Mdl = arima