动手学深度学习--文本预处理、语言模型、循环神经网络基础

1. 文本预处理

文本是一类序列数据,一篇文章可以看作是字符或单词的序列,文本数据的常见预处理通常包括四个步骤:

  1. 读入文本
  2. 分词
  3. 建立字典,将每个词映射到一个唯一的索引(index)
  4. 将文本从词的序列转换为索引的序列,方便输入模型

读入文本

用一部英文小说,即H. G. Well的Time Machine,作为示例,展示文本预处理的具体过程。

import collections
import re

def read_time_machine():
    with open('/home/kesci/input/timemachine7163/timemachine.txt', 'r') as f:
        lines = [re.sub('[^a-z]+', ' ', line.strip().lower()) for line in f]
    return lines


lines = read_time_machine()
print('# sentences %d' % len(lines))

分词

我们对每个句子进行分词,也就是将一个句子划分成若干个词(token),转换为一个词的序列。

def tokenize(sentences, token='word'):
    """Split sentences into word or char tokens"""
    if token == 'word':
        return [sentence.split(' ') for sentence in sentences]
    elif token == 'char':
        return [list(sentence) for sentence in sentences]
    else:
        print('ERROR: unkown token type '+token)

tokens = tokenize(lines)
tokens[0:2]

建立字典

为了方便模型处理,我们需要将字符串转换为数字。因此我们需要先构建一个字典(vocabulary),将每个词映射到一个唯一的索引编号。

class Vocab(object):
    def __init__(self, tokens, min_freq=0, use_special_tokens=False):
        counter = count_corpus(tokens)  # : 
        self.token_freqs = list(counter.items())
        self.idx_to_token = []
        if use_special_tokens:
            # padding, begin of sentence, end of sentence, unknown
            self.pad, self.bos, self.eos, self.unk = (0, 1, 2, 3)
            self.idx_to_token += ['', '', '', '']
        else:
            self.unk = 0
            self.idx_to_token += ['']
        self.idx_to_token += [token for token, freq in self.token_freqs
                        if freq >= min_freq and token not in self.idx_to_token]
        self.token_to_idx = dict()
        for idx, token in enumerate(self.idx_to_token):
            self.token_to_idx[token] = idx

    def __len__(self):
        return len(self.idx_to_token)

    def __getitem__(self, tokens):
        if not isinstance(tokens, (list, tuple)):
            return self.token_to_idx.get(tokens, self.unk)
        return [self.__getitem__(token) for token in tokens]

    def to_tokens(self, indices):
        if not isinstance(indices, (list, tuple)):
            return self.idx_to_token[indices]
        return [self.idx_to_token[index] for index in indices]

def count_corpus(sentences):
    tokens = [tk for st in sentences for tk in st]
    return collections.Counter(tokens)  # 返回一个字典,记录每个词的出现次数

我们看一个例子,这里我们尝试用Time Machine作为语料构建字典

vocab = Vocab(tokens)
print(list(vocab.token_to_idx.items())[0:10])

将词转为索引

使用字典,我们可以将原文本中的句子从单词序列转换为索引序列

for i in range(8, 10):
    print('words:', tokens[i])
    print('indices:', vocab[tokens[i]])

用现有工具进行分词

我们前面介绍的分词方式非常简单,它至少有以下几个缺点:

  1. 标点符号通常可以提供语义信息,但是我们的方法直接将其丢弃了
  2. 类似“shouldn’t", "doesn’t"这样的词会被错误地处理
  3. 类似"Mr.", "Dr."这样的词会被错误地处理

我们可以通过引入更复杂的规则来解决这些问题,但是事实上,有一些现有的工具可以很好地进行分词,我们在这里简单介绍其中的两个:spaCyNLTK

下面是一个简单的例子:

text = "Mr. Chen doesn't agree with my suggestion."
import spacy
nlp = spacy.load('en_core_web_sm')
doc = nlp(text)
print([token.text for token in doc])
from nltk.tokenize import word_tokenize
from nltk import data
data.path.append('/home/kesci/input/nltk_data3784/nltk_data')
print(word_tokenize(text))

2. 语言模型

2.1 语言模型

一段自然语言文本可以看作是一个离散时间序列,给定一个长度为 T T T的词的序列 w 1 , w 2 , … , w T w_1, w_2, \ldots, w_T w1,w2,,wT,语言模型的目标就是评估该序列是否合理,即计算该序列的概率:

P ( w 1 , w 2 , … , w T ) . P(w_1, w_2, \ldots, w_T). P(w1,w2,,wT).

本节我们介绍基于统计的语言模型,主要是 n n n元语法( n n n-gram)。在后续内容中,我们将会介绍基于神经网络的语言模型。

语言模型

假设序列 w 1 , w 2 , … , w T w_1, w_2, \ldots, w_T w1,w2,,wT中的每个词是依次生成的,我们有
KaTeX parse error: No such environment: align* at position 8: \begin{̲a̲l̲i̲g̲n̲*̲}̲ P(w_1, w_2, \l…
例如,一段含有4个词的文本序列的概率
P ( w 1 , w 2 , w 3 , w 4 ) = P ( w 1 ) P ( w 2 ∣ w 1 ) P ( w 3 ∣ w 1 , w 2 ) P ( w 4 ∣ w 1 , w 2 , w 3 ) . P(w_1, w_2, w_3, w_4) = P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_1, w_2) P(w_4 \mid w_1, w_2, w_3). P(w1,w2,w3,w4)=P(w1)P(w2w1)P(w3w1,w2)P(w4w1,w2,w3).

语言模型的参数就是词的概率以及给定前几个词情况下的条件概率。设训练数据集为一个大型文本语料库,如维基百科的所有条目,词的概率可以通过该词在训练数据集中的相对词频来计算,例如, w 1 w_1 w1的概率可以计算为:
P ^ ( w 1 ) = n ( w 1 ) n \hat P(w_1) = \frac{n(w_1)}{n} P^(w1)=nn(w1)

其中 n ( w 1 ) n(w_1) n(w1)为语料库中以 w 1 w_1 w1作为第一个词的文本的数量, n n n为语料库中文本的总数量。

类似的,给定 w 1 w_1 w1情况下, w 2 w_2 w2的条件概率可以计算为:

P ^ ( w 2 ∣ w 1 ) = n ( w 1 , w 2 ) n ( w 1 ) \hat P(w_2 \mid w_1) = \frac{n(w_1, w_2)}{n(w_1)} P^(w2w1)=

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值