SVM, Perceptron, LDA, Logistic Regression etc.

本文对比了机器学习中的SVM、感知机、LDA和逻辑回归,探讨了它们之间的关系和区别。内容包括Fisher线性判别分析与逻辑回归的联系,SVM与感知机的优化方法和适用场景,以及SVM与逻辑回归的差异。此外,还提到了在高维空间中SVM的优势以及在不同问题类型上的适用性选择。
摘要由CSDN通过智能技术生成

机器学习常见算法分类汇总

Are Fisher’s linear discriminant and logistic regression classifier related?

The Efficiency of Logistic Regression Compared to Normal Discriminant Analysis
Bradley Efron
Journal of the American Statistical Association
Vol. 70, No. 352 (Dec., 1975), pp. 892-898

What is the difference between the perceptron learning algorithm and SVM?

Difference between a SVM and a perceptron

The Perceptron does not try to optimize the separation "distance". As long as it finds a hyperplane that separates the two sets, it is good. SVM on the other hand tries to maximize the "support vector", i.e., the distance between two closest opposite sample points.

The SVM typically tries to use a "kernel function" to project the sample points to high dimension space to make them linearly separable, while the perceptron assumes the sample points are linearly separable.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值