Are Fisher’s linear discriminant and logistic regression classifier related?
The Efficiency of Logistic Regression Compared to Normal Discriminant Analysis
Bradley Efron
Journal of the American Statistical Association
Vol. 70, No. 352 (Dec., 1975), pp. 892-898
What is the difference between the perceptron learning algorithm and SVM?
Difference between a SVM and a perceptron
The Perceptron does not try to optimize the separation "distance". As long as it finds a hyperplane that separates the two sets, it is good. SVM on the other hand tries to maximize the "support vector", i.e., the distance between two closest opposite sample points.
The SVM typically tries to use a "kernel function" to project the sample points to high dimension space to make them linearly separable, while the perceptron assumes the sample points are linearly separable.