卷积、脉冲响应、加权模式与向量微分方程
卷积、脉冲响应与加权模式
在进行拉普拉斯变换计算时,利用相关性质可得:
对于 (p(s) X(s) = I),则 (X(s) = \frac{1}{p(s)}),其逆变换 (x(t) = \mathcal{L}^{-1} {\frac{1}{p(s)}} = h(t))。对于延迟输入情况,(p \frac{d^n}{dt^n} x(t) = e(t - T)),(x(0) = \cdots = \frac{d^{N - 1}x}{dt^{N - 1}} = 0),先得到拉普拉斯变换形式 (X(s) = \frac{e^{-sT}}{p(s)}),进而得到正确的极限结果 (x(t) = U(t - T) h(t - T))。这些结果引出了函数 (h) 的另一个术语——脉冲响应。
“delta”函数的性质足以用于许多关于狄拉克函数的形式计算。在傅里叶变换的背景下更容易讨论该对象的性质。需要考虑的一个问题是,“(\delta) - 函数”根本不是一个普通意义上的函数,这意味着积分、微分和变换等概念必须谨慎处理。
下面是一些相关问题及分析:
1. 线性响应验证 :利用拉普拉斯变换的线性性质,证明模型 (p \frac{d^n}{dt^n} x(t) = f(t)),(x(0) = \cdots = \frac{d^{N - 1}x}{dt^{N - 1}} = 0) 的响应在强迫函数 (f(.)) 上是线性的。
2. 函数计算与验证 :
- 计算 (\mathcal{L}{\sin t}) 和 (\mathcal{L}{e^{-t}}
超级会员免费看
订阅专栏 解锁全文
20

被折叠的 条评论
为什么被折叠?



