几种排序算法速度对比,顺便对比一下 ES6 内置的 sort 方法
一、先上代码
1. 冒泡排序
比较相邻的元素,如果第一个比第二个大,就交换它们两个,直到没有需要交换为止。即排序完成。
- 时间复杂度:平均O(n²) 最好O(n) 最坏O(n²)
- 空间复杂度: O(1)
- 稳定性:稳定
/** 冒泡排序 */
function bubbleSort(arr) {
const len = arr.length
if (len >= 1) {
for (let i = 0; i < len - 1; i++) {
for (let j = 0; j < len - 1 - i; j++) {
if (arr[j] > arr[j + 1]) {
let temp = arr[j + 1]
arr[j + 1] = arr[j]
arr[j] = temp
}
}
}
}
return arr
}
2. 选择排序
首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。
- 时间复杂度:平均O(n²) 最好O(n²) 最坏O(n²)
- 空间复杂度: O(1)
- 稳定性:不稳定
/** 选择排序 */
function selectionSort(arr) {
const len = arr.length
let minIndex, temp
for (let i = 0; i < len - 1; i++) {
minIndex = i
for (let j = i + 1; j < len; j++) {
if (arr[j] < arr[minIndex]) {
// 寻找最小的数
minIndex = j
// 将最小数的索引保存
}
}
temp = arr[i]
arr[i] = arr[minIndex]
arr[minIndex] = temp
}
return arr
}
3. 插入排序
工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
- 时间复杂度:平均O(n²) 最好O(n) 最坏O(n²)
- 空间复杂度: O(1)
- 稳定性:稳定
/** 插入排序 */
function insertSort(arr) {
const len = arr.length
let preIndex, current
for (let i = 1; i < len; i++) {
preIndex = i - 1
current = arr[i]
while (preIndex >= 0 && arr[preIndex] > current) {
arr[preIndex + 1] = arr[preIndex]
preIndex--
}
arr[preIndex + 1] = current
}
return arr
}
4. 快速排序
使用分治的思想,通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
具体算法描述如下:
(1) 选择基准:在待排序列中,按照某种方式挑出一个元素,作为 “基准”(pivot)
选择基准的方式 1.固定位置 2.随机选取基准 3.三数取中(左中右)
(2) 分割操作:以该基准在序列中的实际位置,把序列分成两个子序列。此时,在基准左边的元素都比该基准小,在基准右边的元素都比基准大。
(3) 递归地对两个序列进行快速排序,直到序列为空或者只有一个元素。
- 时间复杂度:平均O(nlogn) 最好O(nlogn) 最坏O(n²)
- 空间复杂度: O(nlogn)
- 稳定性:不稳定
/** 快速排序 */
function quickSort(arr, left, right) {
let partitionIndex,
lt = typeof left != "number" ? 0 : left,
rt = typeof right != "number" ? arr.length - 1 : right
if (lt < rt) {
partitionIndex = partition(arr, lt, rt)
quickSort(arr, lt, partitionIndex - 1)
quickSort(arr, partitionIndex + 1, rt)
}
return arr
}
function partition(arr, left, right) {
// 分区操作
let index = left + 1
for (let i = index; i <= right; i++) {
if (arr[i] < arr[left]) {
swap(arr, i, index)
index++
}
}
swap(arr, left, index - 1)
return index - 1
}
function swap(arr, i, j) {
let temp = arr[i]
arr[i] = arr[j]
arr[j] = temp
}
5. 归并排序
归并排序(Merge Sort): 该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。
具体算法描述如下:
1.把长度为n的输入序列分成两个长度为n/2的子序列;
2.对这两个子序列分别采用归并排序;
3.将两个排序好的子序列合并成一个最终的排序序列。
- 时间复杂度:平均O(nlogn) 最好O(nlogn) 最坏O(nlogn)
- 空间复杂度: O(n)
- 稳定性:稳定
/** 归并排序 */
function mergeSort(arr) {
// 采用自上而下的递归方法
const len = arr.length
if (len < 2) {
return arr
}
let middle = Math.floor(len / 2),
left = arr.slice(0, middle),
right = arr.slice(middle)
return merge(mergeSort(left), mergeSort(right))
}
function merge(left, right) {
let result = []
while (left.length > 0 && right.length > 0) {
if (left[0] <= right[0]) {
result.push(left.shift())
} else {
result.push(right.shift())
}
}
while (left.length) {
result.push(left.shift())
}
while (right.length) {
result.push(right.shift())
}
return result
}
6. ES6 内置 sort 方法
NodeJS 使用的 v8 引擎 对 sort 做了特殊处理,对于长度 <= 10 的数组使用插入排序,长度 >10 的数组使用快速排序,并进行了很多优化,比我们常见的快速排序要复杂得多,不过核心算法还是快速排序。
/** ES6内置排序 */
function sort(arr) {
return arr.sort((a, b) => a - b)
}
二、算法分析
排序算法 | 平均时间 | 最坏情况 | 稳定度 | 额外空间 | 备注 |
---|---|---|---|---|---|
冒泡 | O(n^2) | O(n^2) | 稳定 | O(1) | n 小的时候比较好 |
选择 | O(n^2) | O(n^2) | 不稳定 | O(1) | n 小的时候比较好 |
插入 | O(n^2) | O(n^2) | 稳定 | O(1) | 大部分已经排序时比较好 |
快速 | O(nlogn) | O(n^2) | 不稳定 | O(nlogn) | n 大时候较好 |
归并 | O(nlogn) | O(nlogn) | 稳定 | O(1) | n 大时候较好 |
三、测试
环境:NodeJS
1. 测试函数代码
const isArray = Array.isArray
const isObject = (val) => val !== null && typeof val === "object"
/**
* @param {Function} fn 测试函数
* @param {Array} args 测试函数的参数数组
* @returns
*/
const testLog = (fn, args) => {
if (isArray(args)) {
// 克隆参数,防止参数被函数修改而影响后续测试
args = args.map((item) => (isObject(item) ? JSON.parse(JSON.stringify(item)) : item))
} else {
return "参数格式错误"
}
const start_time = process.hrtime()
const result = fn.apply(this, args) // 执行函数
const end_time = process.hrtime(start_time)
const delta_time = Math.floor(end_time[0] * 1000 * 1000 + end_time[1] / 1000)
console.log(result, "------", fn.name, "------", delta_time, "ms")
return { fn: fn.name, time_ms: Math.floor(delta_time / 1000), time_μs: delta_time }
}
/**
* @param {Function} fnArray 由多个测试函数组成的数组
* @param {Array} args 测试函数的参数数组
* @returns
*/
const testQueue = (fnArray, args) => {
let results = []
fnArray.forEach((fn) => results.push(testLog(fn, args)))
console.table(results.sort((a, b) => a.time_μs - b.time_μs))
}
module.exports = { testLog, testQueue }
2. 测试执行代码
/** 引入测试函数 */
const { testQueue } = require("../testLog.js")
const randomArray = require("../randomArray.js")
const rndArr = randomArray(1, 100, 100000)
testQueue(
[bubbleSort, selectionSort, insertSort, quickSort, mergeSort, sort],
[rndArr]
)
3. 测试结果
数组长度 100000 测试结果如下:
排序方法 | 函数名 | 耗时 (ms) |
---|---|---|
sort 方法 | sort | 16 |
快速排序 | quickSort | 36 |
归并排序 | mergeSort | 544 |
插入排序 | insertSort | 1619 |
选择排序 | selectionSort | 3662 |
冒泡排序 | bubbleSort | 11619 |
备注:截图为执行测试代码输出的结果,图中 selectionSort2 为选择排序优化算法,quickSort2 为快速排序极简算法,本文省略。
四、总结
以上几种排序算法最快的是快速排序。当数组足够大时,差距非常明显。
当然,得益于强大的性能优化,ES6 的 sort 方法速度明显更快。
以上测试在 NodeJS 环境中。NodeJS 使用的 v8 引擎 对 sort 做了特殊处理,对于长度 <= 10 的数组使用插入排序,长度 >10 的数组使用快速排序,并进行了很多优化,比我们常见的快速排序要复杂得多,不过核心算法还是快速排序。想要深入了解可以看看 v8 源码 。