关于ssd_mobilenet的object_detection应用

本文记录了作者陈鹏在csdn人工智能直通车-5期课程中使用ssd_mobilenet进行object_detection的作业过程。文章详细描述了从安装环境、配置模型到解决遇到的问题,包括修改配置文件、创建数据集、训练和评估模型的过程。遇到的主要问题包括环境搭建、record文件生成、配置文件适配、cudnn版本不兼容等,这些问题逐一得到解决。
摘要由CSDN通过智能技术生成

姓名:陈鹏

班级:csdn人工智能直通车-5期

描述:这是本人在做作业的过程中,所遇到的问题与总结

首先需要把https://github.com/tensorflow/models/tree/r1.5的代码下载下来

然后进入到https://github.com/tensorflow/models/tree/r1.5/research/object_detection,下面有个README.md

1.installation:

         搭建GPU 环境,反正这个地方,搭建GPU的时候会遇到很多问题,自己多在百度上搜索和尝试,然后在终端依次输入以下命令:

pip install tensorflow-gpu

sudo apt-get install protobuf-compiler python-pil python-lxml

sudo pip install jupyter

sudo pip install matplotlib

sudo pip install pillow

sudo pip install lxml

sudo pip install jupyter

sudo pip install matplotlib

其次 # From tensorflow/models/research/,也就是在research下面的文件下输入:

protoc object_detection/protos/*.proto --python_out=.

export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim

python object_detection/builders/model_builder_test.py

运行完成会出现

预训练模型

         object_detection框架提供了一些预训练的模型以加快模型训练的速度,不同的模型及检测框架的预训练模型不同,常用的模型有resnet,mobilenet以及最近google发布的nasnet,检测框架有faster_rcnn,ssd等,本次作业使用mobilenet模型ssd检测框架,其预训练模型请自行在model_zoo中查找:

https://github.com/tensorflow/models/blob/r1.5/research/object_detection/g3doc/detection_model_zoo.md

然后下载

        

首先生成record文件

python object_detection/dataset_tools/create_data.py --label_map_path=/path/to/labels_items.txt --data_dir=/pa

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值