姓名:陈鹏
班级:csdn人工智能直通车-5期
描述:这是本人在做作业的过程中,所遇到的问题与总结
首先需要把https://github.com/tensorflow/models/tree/r1.5的代码下载下来
然后进入到https://github.com/tensorflow/models/tree/r1.5/research/object_detection,下面有个README.md
1.installation:
搭建GPU 环境,反正这个地方,搭建GPU的时候会遇到很多问题,自己多在百度上搜索和尝试,然后在终端依次输入以下命令:
pip install tensorflow-gpu
sudo apt-get install protobuf-compiler python-pil python-lxml
sudo pip install jupyter
sudo pip install matplotlib
sudo pip install pillow
sudo pip install lxml
sudo pip install jupyter
sudo pip install matplotlib
其次 # From tensorflow/models/research/,也就是在research下面的文件下输入:
protoc object_detection/protos/*.proto --python_out=.
export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim
python object_detection/builders/model_builder_test.py
运行完成会出现
预训练模型
object_detection框架提供了一些预训练的模型以加快模型训练的速度,不同的模型及检测框架的预训练模型不同,常用的模型有resnet,mobilenet以及最近google发布的nasnet,检测框架有faster_rcnn,ssd等,本次作业使用mobilenet模型ssd检测框架,其预训练模型请自行在model_zoo中查找:
然后下载
首先生成record文件
python object_detection/dataset_tools/create_data.py --label_map_path=/path/to/labels_items.txt --data_dir=/pa