A => Option[B] => B 这个过程
scala的 aList.map(B(_)).filter(!_.isEmpty).map(_.get) 和 aList.flatMap(B(_)) 有什么差别? 在 spark rdd 以及 sparksql 同样的操作又有什么异同呢?
scala的 aList.map(B(_)).filter(!_.isEmpty).map(_.get) 和 aList.flatMap(B(_)) 有什么差别? 在 spark rdd 以及 sparksql 同样的操作又有什么异同呢?
--
- Scala
对Option而言,逻辑上flatMap就是map.filter.map的简写。
def flatMap[B](f: A => GenTraversableOnce[B]): Iterator[B] = new AbstractIterator[B] { private var cur: Iterator[B] = empty private def nextCur() { cur = f(self.next()).toIterator } def hasNext: Boolean = { // Equivalent to cur.hasNext || self.hasNext && { nextCur(); hasNext } // but slightly shorter bytecode (better JVM inlining!) while (!cur.hasNext) { if (!self.hasNext) return false nextCur() } true } def next(): B = (if (hasNext) cur else empty).next() }
def filter(p: A => Boolean): Iterator[A] = new AbstractIterator[A] { // TODO 2.12 - Make a full-fledged FilterImpl that will reverse sense of p private var hd: A = _ private var hdDefined: Boolean = false def hasNext: Boolean = hdDefined || { do { if (!self.hasNext) return false hd = self.next() } while (!p(hd)) hdDefined = true true } def next() = if (hasNext) { hdDefined = false; hd } else empty.next() }
def map[B](f: A => B): Iterator[B] = new AbstractIterator[B] { def hasNext = self.hasNext def next() = f(self.next()) }
- Spark RDD
和scala的类似,本身RDD的flatMap、map、filter的compute方法都是调用Scala集合类的对应方法。
- SparkSQL
用explain查看执行计划,不理解的话打断点(打日志)查看生成的java类。
- http://www.winseliu.com/blog/2016/10/12/sparksql-view-and-debug-generatecode/
- https://www.zhihu.com/question/51544925