上海计算机学会2021年8月月赛C++丙组T3四方定理

题目背景

四方定理是数论中著名的一个定理,指任意一个自然数都可以拆成四个自然数的平方之和。例如:

25=12+22+22+4225=12+22+22+42

对2525来说,还有其他方案:

25=02+02+32+4225=02+02+32+42

以及

25=02+02+02+5225=02+02+02+52

题目描述

给定一个自然数 n,请输出 n 的所有四平方拆分方案。

输入格式

单个整数:表示 n。

输出格式

若干行:每行四个由小到大排列的自然数,表示一种拆分方案。如果有多种方案,先输出首项较小的方案,对于首项相同的方案,先输出第二项较小的方案,其他情况以此类推。

数据范围

0≤n≤50,000。

样例数据

输入:

25

输出:

0 0 0 5
0 0 3 4
1 2 2 4

解析:

本题关键点:循环的最大值不要定义为输入的数字n,开一个平方,降低时间复杂度; 然后分成四个for循环解题,代码如下。

#include <iostream>
#include <cmath>
using namespace std;
int main(){
	int a,b,c,d;
	long n,t;
	cin>>n;
	t=int(sqrt(n));
	for(a=0;a<=t;a++)
		for(b=a;b<=t;b++)
			for(c=b;c<=t;c++)
				for(d=c;d<=t;d++)
				{
					if(a*a+b*b+c*c+d*d==n)
						cout<<a<<" "<<b<<" "<<c<<" "<<d<<endl;			
				}			
	return 0;
}

  • 7
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

全栈工程师Linda

感恩您的鼓励,我会继续创作作品

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值