C++的数据结构(十一):树状数组

        树状数组(Binary Indexed Tree),又称Fenwick树,是一种用于高效处理前缀和的数据结构。它的核心思想是通过一系列的位运算来优化求和过程,从而在O(log n)的时间复杂度内完成单点更新和区间查询等操作。

        树状数组的基本思想是将原始数组A[1...n]映射到一个新的数组C[1...n],使得对于任意的前缀和S[i] = A[1] + A[2] + ... + A[i],都可以通过C数组的某些元素的加减运算得到。具体地,对于A数组中的每一个元素A[i],我们将其贡献拆分成多个部分,并分别加到C数组的对应位置上。

         树状数组的基本操作:

        1. 单点更新操作是指在A数组的某个位置i上增加或减少一个值val,并更新C数组以保证前缀和的正确性。这个操作的时间复杂度为O(log n)。示例代码如下。

void update(int i, int val) {
    while (i <= n) {
        C[i] += val;
        i += i & (-i);
    }
}

        2. 前缀和查询操作是指求A数组中前i个元素的和S[i]。由于C数组是经过特殊构造的,我们可以通过对C数组中的某些元素进行加减运算来快速得到S[i]。这个操作的时间复杂度也为O(log n)。示例代码如下。

int query(int i) {
    int sum = 0;
    while (i > 0) {
        sum += C[i];
        i -= i & (-i);
    }
    return sum;
}

        下面是一个使用C++编写的树状数组实例,它演示了如何更新序列中某个位置的值及查询序列中某个位置的前缀和(即该位置及之前所有位置的值之和)。代码如下。

#include <vector>
using namespace std;

class FenwickTree {
private:
    vector<int> bit;

    int lowbit(int x) {
        return x & (-x);
    }

public:
    FenwickTree(int n) : bit(n + 1, 0) {}

    void update(int index, int val) {
        while (index < bit.size()) {
            bit[index] += val;
            index += lowbit(index);
        }
    }

    int query(int index) {
        int sum = 0;
        while (index > 0) {
            sum += bit[index];
            index -= lowbit(index);
        }
        return sum;
    }
};
int main() {
    int n, m;
    cin >> n >> m; // 输入序列长度和操作次数

    FenwickTree ft(n);
    vector<int> a(n + 1);

    // 初始化序列和树状数组
    for (int i = 1; i <= n; ++i) {
        cin >> a[i];
        ft.update(i, a[i]);
    }

    // 执行m次操作
    for (int i = 0; i < m; ++i) {
        int op, p, v;
        cin >> op;
        if (op == 1) { // 更新操作
            cin >> p >> v;
            ft.update(p, v - a[p]); // 更新差值,避免重复加值
            a[p] = v; // 更新原序列中的值
        } else if (op == 2) { // 查询前缀和操作
            cin >> p;
            cout << ft.query(p) << endl;
        }
    }

    return 0;
}

        现在,我们来测试一下这个程序。假设输入如下:

        5 2
        1 2 3 4 5
        1 2 10
        2 5

        输出结果如下。

 

         通过这个示例,我们可以看到树状数组在解决实际问题中的应用。它通过高效的前缀和计算,使得在更新和查询操作中都能保持较低的时间复杂度。当然,树状数组并不是解决所有问题的银弹,但在某些特定场景下,它可以提供非常优秀的性能。

  • 12
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
线段树和树状数组都是用来解决区间相关问题的数据结构。 线段树是一种二叉树形式的数据结构,用于解决区间查询问题。每个节点表示一个区间,根节点表示整个区间,通过对区间进行适当的划分,将原问题划分为子问题,递归地构建线段树。线段树的叶子节点表示原始数组的单个元素,而其他节点表示其子区间的一些统计信息,如和、最大值、最小值等。通过适当的操作,可以在O(logN)的时间内查询区间的统计信息,也可以在O(logN)的时间内更新一个元素或一个区间的值。 树状数组是一种实现类似累加的数据结构,用于解决前缀查询问题。树状数组的底层数据结构是一个数组,通过对数组的某些位置进行增加或查询操作,可以在O(logN)的时间内得到累加值。数组的索引和实际数值之间存在一种特殊的关系,即某个位置的累加值等于该位置的二进制表示中最低位的连续1的个数。树状数组的区间查询通过将原始数组转换为差分数组来实现,将查询问题转换为若干个单点查询。 线段树和树状数组在解决问题时都具有一些特定的优势和适用场景。线段树适用于一些需要频繁修改和查询区间统计信息的问题,如区间最值、区间和等。而树状数组适用于一些需要频繁查询前缀和的问题,如求逆序对的数量或统计小于某个数的元素个数等。根据具体的问题需要,我们可以选择合适的数据结构来解决和优化计算效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

全栈工程师Linda

感恩您的鼓励,我会继续创作作品

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值