1.What is Machine Learning
Machine Learning ≈ Looking for a Function From Data
机器学习三步骤
2.Learning Map
- Regression(回归):The output of the target function f is “scalar”.(e.g.预测PM2.5进行天气预报)
- Classification:
- Binary Classification:机器输出”yes” or “No”。(e.g.Spam filtering)
- Multi-class Classification:机器做一个选择题,从数个类别中选择正确的类别。(e.g.Document Classification)
Classification的Model分为Linear Model和Non-linear Model,Non-linear Model中最出名的就是Deep Learning。
以上均为Supervised Learning,均需要大量的Training Data,Training Data可以告诉我们要找的那个function的Input与Output之间有什么样的关系(Function的output又常叫label)。
- Semi-supervised learning可以减少Training Data的用量。Transfer Learning也可以减少Training Data的用量,数据可以与考虑的任务无关(可以是标记的或未标记的)。
- Unsupervised Learning就是想让机器学到无师自通。例1:让机器看大量的文章,看机器是否可以学会词汇的意思,比如用向量表示词汇。例2:让机器去动物园看一大堆,看机器是否能在看过动物后学会自己创造动物。例3:机器在看过大量图片后是否能学会自己生成图片。
- Structured Learning是我们希望机器能输出有结构性的东西。
- Reinforcement Learning是我们不告诉机器正确答案,只告诉机器我们对它输出的评价,机器唯一知道的的就是它做的好与不好。更加符合人类真实学习的情景。Alpha Go is supervised learning + reinforcement learning.
- 图中蓝色部分指scenario,指学习的情景,由手上的Training Data决定。红色部分指task。绿色部分指Method/Model。
Why we need to learn machine learning?
AI训练师要为机器挑选合适的model和loss function,不同的model和loss function适合解决不同的问题。 有些模型的最佳化比较困难,需要有经验的AI训练师来处理