本地运行stable-diffusion3.5

本地运行stable-diffusion3.5

AI 时代不可阻挡,给老机器加了个4060 16G 显卡,尝试本地运行stable-diffusion3.5。

准备工作

先尝试UI 手动跑跑看,ComfyUI 推荐的比较多,首先尝试在ComfyUI 里面跑。

下载ComfyUI 和需要的模型文件

第一次模型尝试,先下载:https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_nvidia.7z

下载之后解压到本地目录。

从资料看16G 的显存应该可以跑stable-diffusion-3.5-large, 外网访问Hugging Face 可以下载,需要登录,但是代理一般的话,总是失败。

国内可以从魔塔社区下载:https://www.modelscope.cn/models/AI-ModelScope/stable-diffusion-3.5-large。速度快很多,而且不容易因为网络问题出现文件损坏的情况。

需要下载以下几类SD3.5 文件

模型文件:sd3.5_large.safetensors
下载之后放到ComfyUI_windows_portable\ComfyUI\models\checkpoints中

Clip模型文件
魔塔社区中的位置是text_encoders目录下,有三个文件:

  • clip_g.safetensors
  • clip_l.safetensors
  • t5xxl_fp8_e4m3fn.safetensors

下载之后,放到ComfyUI_windows_portable\ComfyUI\models\clip

工作流配置文件
SD3.5L_example_workflow.json

这个下载好后,等启动ComfyUI 之后,拖到浏览器中就可以。

启动ComfyUI

启动

有nvidia显卡,双击run_nvidia_gpu.bat启动。这一步据说需要提前安装其他显卡相关的东西,我以前弄显卡的时候,下载过相关的包。具体哪些不记得了,启动没有任何问题。会自动打开浏览器,访问http://127.0.0.1:8188/

把上面的SD3.5L_example_workflow.json拖到这个页面中就可以。

在工作流中分别选中三个Clip 模型

  1. clip_g.safetensors
  2. clip_l.safetensors
  3. t5xxl_fp8_e4m3fn.safetensors

在CLIP文本编码(提示)中输入自己的提示词,点击最下方的执行,等待一段时间看到图片预览就算成功了。

预览的图片可以右击下载到本地。

sd3.5_large_turbo

我的机器有点旧,large 模型跑一张图片需要 2.6 到4.6 分钟,尝试以下larg turbo。

准备

下载sd3.5_large_turbo.safetensors 放到ComfyUI_windows_portable\ComfyUI\models\checkpoints里面

重新启动run_nvidia_gpu.bat。

把SD3.5L_Turbo_example_workflow.json 拖进去,修改模型文件中的clip 模型文件。

重新跑,第一次好像确实有一倍提升,第二次跑速度快多了!

### Stable Diffusion 3.5本地部署指南 对于希望在本地环境中部署Stable Diffusion 3.5的用户来说,理解所需环境配置以及具体操作流程至关重要。虽然当前参考资料主要集中在其他模型上[^1],但可以借鉴类似的部署思路来完成这一目标。 #### 准备工作 确保计算机满足最低硬件需求,特别是显卡支持CUDA运算的能力。安装必要的软件包和依赖项,比如Python版本应不低于3.8,并通过`apt install -y npm`命令解决npm依赖问题以保障后续可能涉及前端界面构建的需求[^3]。 #### 安装PyTorch及相关库 由于Stable Diffusion高度依赖于深度学习框架的支持,在开始之前需先设置好合适的GPU加速环境: ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117 ``` 此步骤确保了能够利用NVIDIA GPU进行高效的计算处理。 #### 获取并运行Stable Diffusion WebUI 目前最简便的方式之一是采用官方维护的Web UI工具来进行交互式的图像生成体验。克隆仓库后按照指示执行脚本文件即可启动服务端程序: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git cd stable-diffusion-webui ./webui.sh ``` 上述指令会自动下载预训练权重文件并将应用托管至localhost供访问使用。 #### 配置优化建议 为了获得更好的性能表现,可根据实际情况调整参数设定,如降低分辨率、减少迭代次数等措施有助于缩短推理时间而不显著影响质量;另外也可以探索量化技术或混合精度训练方法进一步提升效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值