StableDiffusion-3.5 文生图模型本地部署尝鲜

买了新的 4070TiS 显卡之后,终于有了个人的 16GB 显存,再也不用在关键时刻和实验室的其他人抢那两张 3080Ti 12G 了,所以想试试看干净的 Linux 环境下,显卡用于 AI 创作工作的效率,正好最近听说 StableDiffusion 3.5 模型发布了,有更快的速度和更好的提示词跟随性,我以前也没有试过本地部署这些文生图模型,都是玩在线的一些体验网站。

官方仓库

官方的 sd3.5 仓库 从 README 来看是只支持命令行操作的,有点不方便,所以需要额外使用支持这些大模型或者文生图模型的 UI 界面程序辅助。印象中之前比较火的是 StableDiffusionWebUI 这款,可以在 Windows 上直接运行,但是我现在是 Linux Ubuntu 24.04 ,所以随便谷歌了一下看看有什么推荐,大部分博客都是推荐一个叫 ComfyUI 的可视化界面程序。

在这里插入图片描述

ComfyUI 配置

StableDiffusion 3.5 的发布文章好像就是有 ComfyUI 的推荐链接的,关于 ComfyUI 和 StableDiffusionWebUI 谁好大家可以自己谷歌看看博客,一般是说 ComfyUI 的话占用计算资源更少,出图更快,灵活性更高,使用节点自定义配置界面,但是也更难上手和学习(我觉得还好,节点的输入输出已经节点的功能都直接显示在节点上了一眼就能看明白)。

在这里插入图片描述

根据教程的指示,先把该下载的模型文件下载好,需要 Hugging Face 的账号,随便用邮箱注册一个即可,然后下载模型文件之前需要填写表单表明模型的使用意图之类的,也很简单,没有真实性校验,全凭个人君子本性[doge]

然后克隆 comfyui 的代码仓库到本地,comfyui 也是通过 python 启动一个后

<think>嗯,用户想在本地环境部署文本生成图像的AI模型,比如Stable Diffusion之类的。首先,我需要考虑用户可能的技术背景,他们可能有一定的编程和机器学习基础,但可能对具体部署步骤不太熟悉。 首先,我应该列出部署的基本步骤。通常,部署这类模型需要安装依赖库,比如PyTorch,然后下载预训练模型。然后,需要编写推理代码,加载模型并生成图像。可能还需要处理硬件兼容性,比如GPU支持,或者使用ONNX格式优化推理速度。 接下来,我需要参考用户提供的引用,特别是引用[1]中提到的CogView模型,这是THUDM开源的文本生成图像模型。应该引导用户去他们的GitHub和Hugging Face仓库获取资源。另外,引用[3]提到的高通On-Device AI可能涉及移动端部署,但用户的问题更偏向本地部署,所以可能主要参考引用[1]和通用的Stable Diffusion部署方法。 然后,要确保步骤清晰,比如环境准备、模型下载、编写推理代码、测试运行。同时,可能需要注意常见问题,比如CUDA版本兼容性、依赖冲突,或者模型文件过大导致的内存问题。还要提醒用户可能需要调整参数,如生成步数、图像尺寸等来优化结果。 用户可能遇到的问题包括无法下载模型、缺少依赖项、生成图像质量不佳等。需要给出解决方案,比如使用镜像源安装依赖,检查模型路径是否正确,调整超参数等。另外,如果用户没有高性能GPU,可能需要建议使用CPU模式,但这样生成速度会较慢。 还要考虑不同操作系统的差异,比如Linux和Windows在路径或命令上的不同。不过示例代码通常是跨平台的,只要环境配置正确。同时,可能提到Docker部署作为另一种简化环境配置的方法,但用户可能希望更直接的步骤。 最后,生成的相关问题要覆盖优化、应用场景和本地推理框架,帮助用户扩展知识。确保回答中的引用正确,比如引用[1]的模型资源和引用[3]的On-Device AI,虽然后者可能更多涉及移动端,但可以作为扩展阅读。</think>### 文本生成图像模型的本地部署指南 文本生成图像模型(如Stable Diffusion、DALL·E、CogView等)的本地部署需结合硬件环境和开源框架。以下是基于开源工具的分步指南: --- #### 1. **环境准备** - **Python环境**:推荐Python 3.8+,使用Anaconda或虚拟环境隔离依赖。 - **深度学习框架**:安装PyTorch(需与CUDA版本匹配),例如: ```bash pip install torch torchvision --extra-index-url https://download.pytorch.org/whl/cu117 ``` - **模型依赖库**: ```bash pip install diffusers transformers accelerate # Stable Diffusion依赖 ``` --- #### 2. **模型下载与加载** 以**CogView**(清华开源模型)为例[^1]: ```python from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("THUDM/cogview2", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("THUDM/cogview2", trust_remote_code=True) ``` --- #### 3. **编写推理代码** 示例(基于Stable Diffusion): ```python from diffusers import StableDiffusionPipeline import torch pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) pipe = pipe.to("cuda") # 使用GPU加速 prompt = "一只在太空站里戴着墨镜的猫" image = pipe(prompt).images[0] image.save("output.png") ``` --- #### 4. **优化与调试** - **硬件适配**:若GPU显存不足,启用`enable_attention_slicing`: ```python pipe.enable_attention_slicing() ``` - **ONNX格式转换**:通过高通AI Hub等工具优化移动端推理[^3]。 - **参数调整**:控制生成质量(如`num_inference_steps=50`)。 --- #### 5. **部署验证** 运行后检查输出图像是否符合预期。若生成失败: - 检查CUDA驱动版本 - 确保模型权重文件完整 - 调整提示词(prompt engineering) ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值