判断整数序列是不是二元查找树的后续遍历结果

boolean vertify(int[] sequence,int length)
{
if(sequence == null||length<0)
return false;
int root = sequence[length-1];
int i = 0;
for (; i < length-1; i++)
{
if(sequence[i]>root)
break;
}
int j = i;
for (; j < length-1; j++)
{
if(sequence[j]<root)
return false;

}

boolean left = true;
if(i>0)
left = vertify(sequence, i);
boolean right = true;
if(i<length-1)
right = vertify(sequence, length-i-1);

return left&&right;

}
二元查找的后序遍历特点是:序列最后一个元素为根节点,且序列可以划分为两部分,前半部分小于根节点,后半部分大于根节点。 以下是用 C 语言实现的判断方法: ```c #include <stdio.h> #include <stdbool.h> bool isBST(int arr[], int start, int end) { if (start >= end) { return true; } int root = arr[end]; // 序列最后一个元素为根节点 int i; for (i = start; i < end; i++) { if (arr[i] > root) { break; } } int j; for (j = i; j < end; j++) { if (arr[j] < root) { return false; } } bool left = isBST(arr, start, i - 1); // 递归判断左子 bool right = isBST(arr, i, end - 1); // 递归判断右子 return left && right; } int main() { int arr[] = {2, 4, 3, 6, 8, 7, 5}; int n = sizeof(arr) / sizeof(arr[0]); bool result = isBST(arr, 0, n - 1); printf("%s", result ? "true" : "false"); return 0; } ``` 在上面的代码中,`isBST` 函数用于判断给定的数组 `arr` 是否为二元查找的后序遍历。函数接收三个参数:数组 `arr`,序列起点下标 `start` 和序列终点下标 `end`。函数首先判断序列是否为空或只有一个元素,如果是,则返回 `true`。然后,函数将序列最后一个元素作为根节点,并根据根节点将序列分为两部分,前半部分小于根节点,后半部分大于根节点。接着,函数使用递归判断左子和右子是否分别为二元查找的后序遍历。如果左子和右子都是二元查找的后序遍历,则整个序列就是二元查找的后序遍历。 在 `main` 函数中,我们用一个示例数组调用 `isBST` 函数,并打印判断结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值