黄金分割法推导及单变量函数近似最优解

本文介绍了无约束优化中的黄金分割法,详细阐述了黄金分割法的基本思想、推导过程,并通过实例展示了如何利用黄金分割法寻找单变量函数的近似最优解。此外,还提供了一个具体的Python代码实现作为示例。
摘要由CSDN通过智能技术生成


一.相关术语

1.无约束优化(单变量优化)

无约束优化是在没有约束条件下优化目标函数,这里只涉及基础的单变量函数优化,其模型可表示为:min f(x)。研究无约束优化

有利于后续学习条件优化。

2.精确线搜索

精确线搜索的基本思想是:1.确定包含问题最优解的搜索区间。2.采用插值法或分割技术缩小这个区间,进行搜索求解。

精确线搜索分为两类:1)使用导数的搜索,如插值法,牛顿法以及抛物线法。<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值