1
做数据分析的也一样,各种各样的算法层出不穷,软件也五花八门,各说各有理,也没有一个统一的方法和标准,不也就是一小搓程序猿们的狂欢么。还有现在超火的单细胞测序,各种CNS满天飞,好多作者连基本的免疫学背景都没有,就单靠数据本身就给细胞分成那么多乱七八糟的群,不同的文章数据甚至不能互通,根据的标准和算法都不一致,最后也没有什么实际结论,简直是笑话,在我们传统做免疫的人看来都是一堆堆的垃圾擦腚纸而已!
也就是其实做生信分析需要有一定的免疫知识,一定的生物学背景以及一定的医学背景。
2
唉,作为一个从实验科学转生信方向的过来人说两句吧,有些基因或蛋白之所以经典,一方面是它功能可能真的很重要,另一方面有可能是它对于后来者能不能发好文章很重要。我不否认实验科学是生物科学的根本,但就国内生物科学或基础医学领域的实验玩法,就像是打地鼠一样的感觉,每个人打一个洞的地鼠,打完就不管了,再去打另一个洞的地鼠,不看其他洞的地鼠和其他游戏机的地鼠,只要有打不完的地鼠,就觉得精神振奋,打得很爽。关于生信吧,生物与不同学科的交叉导致有很多不同交叉领域的生信方向,生信更多的是在研究地鼠从不同洞里出来的速度、关系、规律和算法,期待有一天可以把他们一网打尽,但由于地鼠研究太过复杂,并且有时候还是需要实验验证,所以生信往往又有一种力不从心的感觉。于是,有很多像我们这种小人物,研究的是大人物挖掘完之后剩下的数据,和大部分实验科学小人物一样,产生一些价值不大的研究成果。但我坚信,生物医学发展确实离不开实验科学的支持,但在当今人工智能大数据爆炸的时代,不借助生信,也不乏自娱自乐之嫌。