有 NN 种物品和一个容量是 VV 的背包。
第 ii 种物品最多有 sisi 件,每件体积是 vivi,价值是 wiwi。
求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。
输入格式
第一行两个整数,N,VN,V (0<N≤1000(0<N≤1000, 0<V≤20000)0<V≤20000),用空格隔开,分别表示物品种数和背包容积。
接下来有 NN 行,每行三个整数 vi,wi,sivi,wi,si,用空格隔开,分别表示第 ii 种物品的体积、价值和数量。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N≤10000<N≤1000
0<V≤200000<V≤20000
0<vi,wi,si≤200000<vi,wi,si≤20000
提示
本题考查多重背包的单调队列优化方法。
输入样例
4 5
1 2 3
2 4 1
3 4 3
4 5 2
输出样例:
10
#include<bits/stdc++.h>
using namespace std;
const int N=20010;
int f[N],g[N],q[N];// //g[]为dp[i-1][],f[]为dp[i][]
int main()
{
int n,m;
cin>>n>>m;
for(int i=0;i<n;i++)
{
int v,w,s;
cin>>v>>w>>s;
memcpy(g,f,sizeof(f));// 从存储区 str2 复制 n 个字节到存储区 str1。
for(int j=0;j<v;j++)//枚举余数
{
int hh=0,tt=-1;
for(int k=j;k<=m;k+=v) //当前背包容量为k
{///单调队列优化
f[k]=g[k];
if(hh<=tt&&k-s*v>q[hh])hh++;
if(hh<=tt)f[k]=max(f[k],g[q[hh]]+(k-q[hh])/v*w);
while(hh<=tt&&g[q[tt]]-(q[tt]-j)/v*w<=g[k]-(k-j)/v*w)
tt--;
q[++tt]=k;
}
}
}
cout<<f[m]<<endl;
return 0;
}