Acwing--多重背包问题 III(单调队列优化)

38 篇文章 1 订阅
20 篇文章 0 订阅

有 NN 种物品和一个容量是 VV 的背包。

第 ii 种物品最多有 sisi 件,每件体积是 vivi,价值是 wiwi。

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。

输入格式

第一行两个整数,N,VN,V (0<N≤1000(0<N≤1000, 0<V≤20000)0<V≤20000),用空格隔开,分别表示物品种数和背包容积。

接下来有 NN 行,每行三个整数 vi,wi,sivi,wi,si,用空格隔开,分别表示第 ii 种物品的体积、价值和数量。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N≤10000<N≤1000
0<V≤200000<V≤20000
0<vi,wi,si≤200000<vi,wi,si≤20000

提示

本题考查多重背包的单调队列优化方法。

输入样例

4 5
1 2 3
2 4 1
3 4 3
4 5 2

输出样例:

10

 

#include<bits/stdc++.h>
using namespace std;
const int N=20010;
int f[N],g[N],q[N];// //g[]为dp[i-1][],f[]为dp[i][]
                
int main()
{
    int n,m; 
	cin>>n>>m;
	for(int i=0;i<n;i++)
	{
		int v,w,s;
		cin>>v>>w>>s;
		memcpy(g,f,sizeof(f));// 从存储区 str2 复制 n 个字节到存储区 str1。
		for(int j=0;j<v;j++)//枚举余数 
		{
			int hh=0,tt=-1;
			for(int k=j;k<=m;k+=v) //当前背包容量为k
			{///单调队列优化
			    f[k]=g[k];
				if(hh<=tt&&k-s*v>q[hh])hh++;
				if(hh<=tt)f[k]=max(f[k],g[q[hh]]+(k-q[hh])/v*w);
				while(hh<=tt&&g[q[tt]]-(q[tt]-j)/v*w<=g[k]-(k-j)/v*w)
				tt--;
				q[++tt]=k; 
				
			}
		}
	}
	cout<<f[m]<<endl;
	return 0;
 } 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值