AcWing 6. 多重背包问题 III

该博客介绍了如何使用动态规划结合单调队列优化解决多重背包问题,其中涉及物品的体积、价值和数量限制。通过实例解析和代码展示,详细解释了算法的思路和实现过程,包括如何通过偏移量处理和维护窗口最大值来优化求解过程。
摘要由CSDN通过智能技术生成

参考题目
AcWing 6. 多重背包问题 III

题目描述

N N N 种物品和一个容量是 V V V 的背包。

i i i 种物品最多有 s i s_i si 件,每件体积是 v i v_i vi,价值是 w i w_i wi

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。


思路
  • 与二进制优化不同,使用单调队列优化是根据小于 v i v_i vi 的自然数作为余数来分类。
  • 具体推理:
f[i][j] = max(f[i-1][j], f[i-1][j-v]+w, f[i-1][j-2v]+2w, ..., f[i-1][j-sv]+sw)
只需要从小到大,即使用f[i][j ~ j - sv](需要加一个偏移量)更新一下f[i][j]
f[i][j-v] =          max(f[i-1][j-v],   f[i-1][j-2v]+ w, ..., f[i-1][j-v-sv]+sw)
.
.
.
f[i][r+sv+v] = max(f[i-1][r+v], f[i-1][r+2v]+w, ..., f[i-1][r+sv+v]+sw)
f[i][r+sv] =   max(f[i-1][r], f[i-1][r+v]+w, ..., f[i-1][r+sv]+sw)
.
.
.
f[i][r+v] = max(f[i-1][r], f[i-1][r+v]+w)
f[i][r] =   max(f[i-1][r]);
  • 可以发现需要维护一个 s i s_i si 的一个窗口的最大值,由于每个数还要加上一个偏移量,按下面方式处理就可以使用单调队列了。
构造一个简单情况
f[j] = max(f][j], f[j - v] + w, f[j - 2v] + 2w)
等价于 f[j] = max(f[j] - 2w, f[j - v] + w - 2w, f[j - 2v] + 2w - 2w) + 2w
等价于 f[j] = max(f[j] - 2w, f[j - v] - w, f[j - 2v]) + 2w
再简单一点
5 = max(1, 4 + 1, 2 + 2 )
5 = max(1 - 2, 4 + 1 - 2, 2 + 2 - 2) + 2
5 = max(-1, 3, 2) + 2
代码

时间复杂度: O ( N M ) O(NM) O(NM)

#include <iostream>
#include <cstring>

const int N = 20010;

int n, m;
int f[N], g[N], q[N];

int main()
{
    std::cin >> n >> m;
    
    for (int i = 0; i < n; i ++)
    {
        int v, w, s;
        std::cin >> v >> w >> s;
        
        memcpy(g, f, sizeof(f));
        for (int j = 0; j < v; j ++ )
        {
            int hh = 0, tt = -1;
            /*
            	以v = 2, s = 3, g[1] 与 g[3] 与 g[5] 与 f[7]为例
            	f[7] = max(g[5] + w, g[3] + 2w, g[1] + 3w);
            	
            */
            for (int k = j; k <= m; k += v)
            {
                if (hh <= tt && q[hh] < k - s * v) hh ++ ;
                
                while (hh <= tt && 
                g[k] >= g[q[tt]] + (k - q[tt]) / v * w) tt -- ;
                
                q[++ tt] = k;
                
                f[k] = g[q[hh]] + (k - q[hh]) / v * w;
            }
        }
    }
    
    std::cout << f[m] << '\n';
    
    return 0;
}

参考资料
https://www.acwing.com/solution/content/1537/
https://www.acwing.com/solution/content/53507/
https://www.acwing.com/solution/content/6500/
https://www.acwing.com/solution/content/18483/
https://www.acwing.com/video/367/
https://www.bilibili.com/video/BV1354y1C7SF?share_source=copy_web

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值