蓝桥杯--历届真题 货物摆放【第十二届】【省赛】【B组】

题目的意思就是,给我们一个n,我们将n分解为3个数的乘积。且4=1*2*2,和4=2*1*2视为不同的方案,即排列,不是组合。

问一共有多少用不同的分解方式

这个题需要我们看一下,n有什么性质

发现n=a*b*c,a,b,c必然都是n的约数

所以这个题可以先求一下n的所有约数,用vector来存储

然后三个for循环暴力来写,如果n=a*b*c ,ans++

如何求一个数的约数:Acwing--试除法求约数_wowon~的博客-CSDN博客

答案:2430

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
vector<ll>v;
ll n;

int main()
{
	n=2021041820210418;
	for(int i=1;i<=n/i;i++)
	{
		if(n%i==0){v.push_back(i);
		if(i!=n/i)v.push_back(n/i); 
	    }
	}
	ll ans=0;
	for(int a=0;a<v.size();a++)
	{
		for(int b=0;b<v.size();b++)
		{
			for(int c=0;c<v.size();c++)
			{
				if(v[a]*v[b]*v[c]==n)
				ans++;
			}
		}
	}
	cout<<ans<<endl;
	
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值