- Non-negative matrix factorization
对整体的感知是建立在对部分的感知的基础之上吗?心理和生理上的证据表明,这种基于部分的表示(parts-based representation)存在于大脑中。但人们对大脑是如何学习对象的局部的所知甚少。[1]提出了nonnegative matrix factorization (NMF) 算法用于学习脸部图像和文本的局部特征。NMF和principal components analysis (PCA [5]) 以及vector quantization (VQ,什么是VQ?)的区别是,NMF限定矩阵分解后的所有因子都是非负的。这一限制使得在使用分解后的因子表示原来的对象时,只存在加法操作。因此这是一种parts-based representation. 当NMF被翻译为神经网络算法时,神经元的射速永远是非负的,突触的连接强度不会改变符号。