Non-negative matrix factorizatio…

非负矩阵分解(NMF)是一种学习局部特征的算法,尤其适用于脸部识别和文本聚类。与PCA和VQ不同,NMF强制分解后的因子非负,提供部分基表示。NMF在脸部识别中发现局部特征,而在文本聚类中,通过稀疏编码直接指示文档类别,无需额外的聚类步骤。
摘要由CSDN通过智能技术生成

 

  1. Non-negative matrix factorization

对整体的感知是建立在对部分的感知的基础之上吗?心理和生理上的证据表明,这种基于部分的表示(parts-based representation)存在于大脑中。但人们对大脑是如何学习对象的局部的所知甚少。[1]提出了nonnegative matrix factorization (NMF) 算法用于学习脸部图像和文本的局部特征。NMFprincipal components analysis (PCA [5]) 以及vector quantization (VQ,什么是VQ)的区别是,NMF限定矩阵分解后的所有因子都是非负的。这一限制使得在使用分解后的因子表示原来的对象时,只存在加法操作。因此这是一种parts-based representation. NMF被翻译为神经网络算法时,神经元的射速永远是非负的,突触的连接强度不会改变符号。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>