- Non-negative matrix factorization
对整体的感知是建立在对部分的感知的基础之上吗?心理和生理上的证据表明,这种基于部分的表示(parts-based representation)存在于大脑中。但人们对大脑是如何学习对象的局部的所知甚少。[1]提出了nonnegative matrix factorization (NMF) 算法用于学习脸部图像和文本的局部特征。NMF和principal components analysis (PCA [5]) 以及vector quantization (VQ,什么是VQ?)的区别是,NMF限定矩阵分解后的所有因子都是非负的。这一限制使得在使用分解后的因子表示原来的对象时,只存在加法操作。因此这是一种parts-based representation. 当NMF被翻译为神经网络算法时,神经元的射速永远是非负的,突触的连接强度不会改变符号。
如图一 [1] 所述,在脸部识别任务中,VQ发现一组原型,这些原型都是脸部整体;PCA发现的是eigenfaces,一些eigenfaces很像被扭曲的脸部全景。而NMF发现的都是脸的局部特征(基本组成部分)。
假设脸部数据构成了一个m×n的矩阵X,每一列均表示一张由m个非负像素值构成的图片。NMF的目标是构造U,V,使得X≈UV即
其中U和V分别是m×k和n×k的矩阵。U中的列向量被称为基本图像(basis image)。V中的列向量被称为编码(encoding),每一条编码对应于原始数据X中的一个列向量。一条编码中的系数表明了原始数据中的一张脸部图像数据是如何由基本图像线性组合构成的。
在VQ中,每一条编码被限制为一个一元向量,也就是说,每一张脸部图像均由某一张基本图像近似;PCA要求U中的列向量是标准正交的,而H中的行向量也是正交的。这一要求相较于VQ是放宽了。PCA不限制U和V元素的正负性,因此在线性组合eigenfaces(U中的列向量)时,存在复杂的正负值相互抵消,也使得eigenfaces缺乏直觉的解释。
NMF不允许U和V中存在非负元素,进一步使得线性组合只存在加法。由于基本图像只包含了脸部的局部,而一张脸部图像不一定由全部的基本图像构成,因此基本图像和编码都是稀疏的。而VQ和PCA中的编码都是fully distributed endocing(对应向量的每一个元素都有取值)。如果将上述算法应用于文本数据,NMF也同样显得更加合理。因为一个文本更可能由部分主题而不是由绝对的一个(VQ)或全部主题(PCA)构成。
需要注意的是,NMF假设隐藏元素是非负的,但并没有限制隐藏元素之间的统计依赖性。当进行文本聚类时,这一点进一步将NMF与SVD、谱聚类等算法区分开来。NMF并不需要而外的算法进行聚类。一般的,编码的长度r就是聚类个数,一个编码中取值最大的元素对应的类别编号就是该文档对应类别。而编号对应的W中的列向量就是对应类别的类中心。因此NMF是一个更加直接、易于理解的聚类方法 [2]。
NMF用于文本聚类的一般方法如下:
更新法则:
b、根据目标函数和更新法则将X分解为U和V;
c、归一化U和V[2];
d、使用V来确定每一个文档的类别标签。
由于NMF限制数据必须为非负取值,且隐藏变量的取值不一定是原始数据的线性组合,这使得NMF只能应用于非负数据,且不能应用于kernel space。而CF不限制数据的非负性,并且要求隐藏变量是原始数据的线性组合,因此可以使用核函数应用于kernel space [4]。使用Rc代表概念c的中心,Xi代表第i条数据,CF的目标是找到W使得:
Ref. [1] Learning the Parts of Objects by Nonnegative Matrix Factorization
[2] Document Clustering Based on Non-negative Matrix Factorization
[3] Locally Consistent Concept Factorization for Document Clustering
[4] Document Clustering by Concept Factorization
[5] Recent developments in document clustering