python_分类_category方法

38 篇文章 2 订阅

python_分类_category方法

from_codes构造器

Advanced pandas
import numpy as np
import pandas as pd
np.random.seed(12345)
import matplotlib.pyplot as plt
plt.rc('figure', figsize=(10, 6))
PREVIOUS_MAX_ROWS = pd.options.display.max_rows
pd.options.display.max_rows = 20
np.set_printoptions(precision=4, suppress=True)
Categorical Data
Background and Motivation
# 背景和⽬的
# 表中的⼀列通常会有重复的包含不同值的⼩集合的情况。我们已
# 经学过了unique和value_counts,它们可以从数组提取出不同的
# 值,并分别计算频率:
import numpy as np; import pandas as pd
values = pd.Series(['apple', 'orange', 'apple',
                    'apple'] * 2)
values
# pd.unique(values)
# pd.value_counts(values)
0     apple
1    orange
2     apple
3     apple
4     apple
5    orange
6     apple
7     apple
dtype: object
# 以使⽤take⽅法存储原始的字符串Series: 使用take加载series数据
values = pd.Series([0, 1, 0, 0] * 2)
dim = pd.Series(['apple', 'orange'])
values
dim
0     apple
1    orange
dtype: object
    
# 使用take分类  分桶    为分类或字典编码表示法
# 这种⽤整数表示的⽅法称为分类或字典编码表示法。不同值得数
# 组称为分类、字典或数据级。本书中,我们使⽤分类的说法。表
# 示分类的整数值称为分类编码或简单地称为编码。
# 分类表示可以在进⾏分析时⼤⼤的提⾼性能。你也可以在保持编
# 码不变的情况下,对分类进⾏转换。⼀些相对简单的转变例⼦包
# 括:
# 重命名分类。
# 加⼊⼀个新的分类,不改变已经存在的分类的顺序或位置。
dim.take(values)
0     apple
1    orange
0     apple
0     apple
0     apple
1    orange
0     apple
0     apple
dtype: object
Categorical Type in pandas
pandas的分类类型
# pandas有⼀个特殊的分类类型,⽤于保存使⽤整数分类表示法
# 的数据。看⼀个之前的Series例⼦:
# pandas的分类类型
# pandas有⼀个特殊的分类类型,⽤于保存使⽤整数分类表示法
# 的数据。看⼀个之前的Series例⼦:
fruits = ['apple', 'orange', 'apple', 'apple'] * 2
N = len(fruits)
df = pd.DataFrame({'fruit': fruits,
                   'basket_id': np.arange(N),
                   'count': np.random.randint(3, 15, size=N),
                   'weight': np.random.uniform(0, 4, size=N)},
                  columns=['basket_id', 'fruit', 'count', 'weight'])
df
basket_id	fruit	count	weight
0	0	apple	5	3.858058
1	1	orange	8	2.612708
2	2	apple	4	2.995627
3	3	apple	7	2.614279
4	4	apple	12	2.990859
5	5	orange	8	3.845227
6	6	apple	5	0.033553
7	7	apple	4	0.425778
fruit_cat的值不是NumPy数组,⽽是⼀个pandas.Categorical实
# 例:
fruit_cat = df['fruit'].astype('category')
fruit_cat
# fruit_cat的值不是NumPy数组,⽽是⼀个pandas.Categorical实
# 例:
0     apple
1    orange
2     apple
3     apple
4     apple
5    orange
6     apple
7     apple
Name: fruit, dtype: category
Categories (2, object): [apple, orange]
c = fruit_cat.values
type(c)
pandas.core.arrays.categorical.Categorical
# 分类对象有categories和codes属性:
c.categories
c.codes
​
array([0, 1, 0, 0, 0, 1, 0, 0], dtype=int8)
你可将DataFrame的列通过分配转换结果,转换为分类:
# 你可将DataFrame的列通过分配转换结果,转换为分类:
df['fruit'] = df['fruit'].astype('category')
df.fruit
0     apple
1    orange
2     apple
3     apple
4     apple
5    orange
6     apple
7     apple
Name: fruit, dtype: category
Categories (2, object): [apple, orange]
# 还可以从其它Python序列直接创建pandas.Categorical:
my_categories = pd.Categorical(['foo', 'bar', 'baz', 'foo', 'bar'])
my_categories
[foo, bar, baz, foo, bar]
Categories (3, object): [bar, baz, foo]
# 如果你已经从其它源获得了分类编码,你还可以使⽤from_codes
# 构造器:
categories = ['foo', 'bar', 'baz']
codes = [0, 1, 2, 0, 0, 1]
my_cats_2 = pd.Categorical.from_codes(codes, categories)
my_cats_2
[foo, bar, baz, foo, foo, bar]
Categories (3, object): [foo, bar, baz]
Categorical
# 与显示指定不同,分类变换不认定指定的分类顺序。因此取决于
# 输⼊数据的顺序, categories数组的顺序会不同。当使⽤
# from_codes或其它的构造器时,你可以指定分类⼀个有意义的顺
# 序:
ordered_cat = pd.Categorical.from_codes(codes, categories,
                                        ordered=True)
ordered_cat
[foo, bar, baz, foo, foo, bar]
Categories (3, object): [foo < bar < baz]
输出[foo < bar < baz]指明‘foo’位于‘bar’的前⾯,以此类推。⽆序
# 的分类实例可以通过as_ordered排序:
# 输出[foo < bar < baz]指明‘foo’位于‘bar’的前⾯,以此类推。⽆序
# 的分类实例可以通过as_ordered排序:
my_cats_2.as_ordered()
[foo, bar, baz, foo, foo, bar]
Categories (3, object): [foo < bar < baz]
Computations with Categoricals¶
# ⽤分类进⾏计算
# 与⾮编码版本(⽐如字符串数组)相⽐,使⽤pandas的
# Categorical有些类似。某些pandas组件,⽐如groupby函数,更
# 适合进⾏分类。还有⼀些函数可以使⽤有序标志位。
# 来看⼀些随机的数值数据,使⽤pandas.qcut⾯元函数。它会返
# 回pandas.Categorical,我们之前使⽤过pandas.cut,但没解释
# 分类是如何⼯作的:
np.random.seed(12345)
draws = np.random.randn(1000)
draws[:5]
# draws
array([-0.2047,  0.4789, -0.5194, -0.5557,  1.9658])
# 计算这个数据的分位⾯元,提取⼀些统计信息:
bins = pd.qcut(draws, 4)
bins
[(-0.684, -0.0101], (-0.0101, 0.63], (-0.684, -0.0101], (-0.684, -0.0101], (0.63, 3.928], ..., (-0.0101, 0.63], (-0.684, -0.0101], (-2.9499999999999997, -0.684], (-0.0101, 0.63], (0.63, 3.928]]
Length: 1000
Categories (4, interval[float64]): [(-2.9499999999999997, -0.684] < (-0.684, -0.0101] < (-0.0101, 0.63] < (0.63, 3.928]]
# 虽然有⽤,确切的样本分位数与分位的名称相⽐,不利于⽣成汇
# 总。我们可以使⽤labels参数qcut,实现⽬的
bins = pd.qcut(draws, 4, labels=['Q1', 'Q2', 'Q3', 'Q4'])
bins
bins.codes[:10]
array([1, 2, 1, 1, 3, 3, 2, 2, 3, 3], dtype=int8)
加上标签的⾯元分类不包含数据⾯元边界的信息,因此可以使⽤
# groupby提取⼀些汇总信息:
# 加上标签的⾯元分类不包含数据⾯元边界的信息,因此可以使⽤
# groupby提取⼀些汇总信息:
bins = pd.Series(bins, name='quartile')
results = (pd.Series(draws)
           .groupby(bins)
           .agg(['count', 'min', 'max'])
           .reset_index())
results
quartile	count	min	max
0	Q1	250	-2.949343	-0.685484
1	Q2	250	-0.683066	-0.010115
2	Q3	250	-0.010032	0.628894
3	Q4	250	0.634238	3.927528
分位数列保存了原始的⾯元分类信息,包括排序:
# 分位数列保存了原始的⾯元分类信息,包括排序:
results['quartile']
0    Q1
1    Q2
2    Q3
3    Q4
Name: quartile, dtype: category
Categories (4, object): [Q1 < Q2 < Q3 < Q4]
#### Better performance with categoricals
labels
# ⽤分类提⾼性能
# 如果你是在⼀个特定数据集上做⼤量分析,将其转换为分类可以
# 极⼤地提⾼效率。 DataFrame列的分类使⽤的内存通常少的多。
# 来看⼀些包含⼀千万元素的Series,和⼀些不同的分类:
N = 10000000
draws = pd.Series(np.random.randn(N))
labels = pd.Series(['foo', 'bar', 'baz', 'qux'] * (N // 4))
现在,将标签转换为分类:
# 现在,将标签转换为分类:
categories = labels.astype('category')
# 这时,可以看到标签使⽤的内存远⽐分类多:
labels.memory_usage()
categories.memory_usage()
10000272
GroupBy操作明显⽐分类快,是因为底层的算法使⽤整数编码数
# 487组,⽽不是字符串数组。
# 转换为分类不是没有代价的,但这是⼀次性的代价:
# GroupBy操作明显⽐分类快,是因为底层的算法使⽤整数编码数
# 487组,⽽不是字符串数组。
%time _ = labels.astype('category')
Wall time: 705 ms
Categorical Methods
# 分类⽅法
# 包含分类数据的Series有⼀些特殊的⽅法,类似于Series.str字符
# 串⽅法。它还提供了⽅便的分类和编码的使⽤⽅法。看下⾯的
# Series:
s = pd.Series(['a', 'b', 'c', 'd'] * 2)
cat_s = s.astype('category')
cat_s
0    a
1    b
2    c
3    d
4    a
5    b
6    c
7    d
dtype: category
Categories (4, object): [a, b, c, d]
# 特别的cat属性提供了分类⽅法的⼊⼝:
cat_s.cat.codes
cat_s.cat.categories
Index(['a', 'b', 'c', 'd'], dtype='object')
假设我们知道这个数据的实际分类集,超出了数据中的四个值。
# 我们可以使⽤set_categories⽅法改变它们:
# 假设我们知道这个数据的实际分类集,超出了数据中的四个值。
# 我们可以使⽤set_categories⽅法改变它们:
actual_categories = ['a', 'b', 'c', 'd', 'e']
cat_s2 = cat_s.cat.set_categories(actual_categories)
cat_s2
0    a
1    b
2    c
3    d
4    a
5    b
6    c
7    d
dtype: category
Categories (5, object): [a, b, c, d, e]
虽然数据看起来没变,新的分类将反映在它们的操作中。例如,
# 如果有的话, value_counts表示分类:
# 虽然数据看起来没变,新的分类将反映在它们的操作中。例如,
# 如果有的话, value_counts表示分类:
cat_s.value_counts()
cat_s2.value_counts()
d    2
c    2
b    2
a    2
e    0
dtype: int64
在打数据集中,分类经常作为节省内存和⾼性能的便捷⼯具。过
# 滤完⼤DataFrame或Series之后,许多分类可能不会出现在数据
# 中。我们可以使⽤remove_unused_categories⽅法删除没看到
# 的分类:
# 在打数据集中,分类经常作为节省内存和⾼性能的便捷⼯具。过
# 滤完⼤DataFrame或Series之后,许多分类可能不会出现在数据
# 中。我们可以使⽤remove_unused_categories⽅法删除没看到
# 的分类:
cat_s3 = cat_s[cat_s.isin(['a', 'b'])]
cat_s3
cat_s3.cat.remove_unused_categories()
0    a
1    b
4    a
5    b
dtype: category
Categories (2, object): [a, b]



Creating dummy variables for modeling¶
# 为建模创建虚拟变量
# 当你使⽤统计或机器学习⼯具时,通常会将分类数据转换为虚拟
# 变量,也称为one-hot编码。这包括创建⼀个不同类别的列的
# DataFrame;这些列包含给定分类的1s,其它为0。
# 看前⾯的例⼦:
cat_s = pd.Series(['a', 'b', 'c', 'd'] * 2, dtype='category')
cat_s
0    a
1    b
2    c
3    d
4    a
5    b
6    c
7    d
dtype: category
Categories (4, object): [a, b, c, d]
前⾯的第7章提到过, pandas.get_dummies函数可以转换这个以
# 为分类数据为包含虚拟变量的DataFrame:
# 前⾯的第7章提到过, pandas.get_dummies函数可以转换这个以
# 为分类数据为包含虚拟变量的DataFrame:
pd.get_dummies(cat_s)
a	b	c	d
0	1	0	0	0
1	0	1	0	0
2	0	0	1	0
3	0	0	0	1
4	1	0	0	0
5	0	1	0	0
6	0	0	1	0
7	0	0	0	1


Python中,BBC分类可以使用以下步骤进行: 1. 导入必要的库和模块: ```python import nltk from nltk.corpus import reuters from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.metrics import classification_report ``` 2. 加载BBC数据集: ```python bbc_documents = [] for category in reuters.categories(): if category.startswith('bbc'): bbc_documents += reuters.fileids(category) ``` 3. 定义停用词和分词器: ```python stop_words = set(stopwords.words("english")) tokenizer = nltk.RegexpTokenizer(r"\w+") ``` 4. 对BBC数据集进行文本预处理: ```python bbc_corpus = [] bbc_labels = [] for document in bbc_documents: text = reuters.raw(document) text = text.lower() # 转换为小写 text_tokens = tokenizer.tokenize(text) # 分词 text_tokens = [token for token in text_tokens if token not in stop_words] # 去除停用词 text = " ".join(text_tokens) bbc_corpus.append(text) bbc_labels.append(reuters.categories(document)[0]) ``` 5. 将BBC数据集划分为训练集和测试集: ```python X_train, X_test, y_train, y_test = train_test_split(bbc_corpus, bbc_labels, test_size=0.2, random_state=42) ``` 6. 将文本转换为TF-IDF特征向量: ```python vectorizer = TfidfVectorizer() X_train_tfidf = vectorizer.fit_transform(X_train) X_test_tfidf = vectorizer.transform(X_test) ``` 7. 训练朴素贝叶斯分类器: ```python classifier = MultinomialNB() classifier.fit(X_train_tfidf, y_train) ``` 8. 对测试集进行预测和评估: ```python y_pred = classifier.predict(X_test_tfidf) print(classification_report(y_test, y_pred)) ``` 以上就是在Python中使用朴素贝叶斯分类器对BBC数据集进行分类的步骤。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值