决策树的优点和缺点

决策树的优点和缺点

2 ID3、C4.5、CART

这三个是非常著名的决策树算法。简单粗暴来说:
ID3 使用信息增益作为选择特征的准则;
C4.5 使用信息增益比作为选择特征的准则;
CART 使用 Gini 指数作为选择特征的准则。
参考:
https://blog.csdn.net/gunhunti4524/article/details/81506012

   如前所述,控制决策树模型复杂度的参数是预剪枝参数,它在树完全展开之前停止树的构造。通常来说,选择一种预剪枝策略(设置 max_depth、 max_leaf_nodes 或 min_samples_
leaf)足以防止过拟合

决策树有两个优点:
一是得到的模型很容易可视化,非专家也很容易理解(至少对于较小的树而言);
二是算法完全不受数据缩放的影响。由于每个特征被单独处理,而且数据的划分也不依赖于缩放,因此决策树算法不需要**特征预处理,比如归一化或标准化**。
特别是特征的尺度完全不一样时或者二元特征和连续特征同时
存在时,决策树的效果很好


决策树的主要缺点在于,即使做了预剪枝,它也经常会过拟合,泛化性能很差。因此,在大多数应用中,往往使用下面介绍的集成方法来替代单棵决策树





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值