求n个点的费马点的花式乱搞

本文讲述了作者在微软编程之美比赛中遇到的活动中心问题,即求解二维平面上n个点的X轴上的费马点。讨论了二分、三分法的错误应用,以及牛顿迭代和模拟退火算法的实现。文章指出,特定情况下费马点可能有多个解,导致某些算法可能失败。最后,作者提到三分法优化后可能能通过大数据,但由于比赛限制未能验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  今天下午做了微软2014编程之美初赛第一场,被虐成翔了,排名才1025。仅仅过掉了第一题的大小数据,以及第三题的小数据。其中第三题觉得挺好玩的,于是就额外乱搞了一下。

题目3 : 活动中心

时间限制: 12000ms
单点时限: 6000ms
内存限制: 256MB

描述

A市是一个高度规划的城市,但是科技高端发达的地方,居民们也不能忘记运动和锻炼,因此城市规划局在设计A市的时候也要考虑为居民们建造一个活动中心,方便居住在A市的居民们能随时开展运动,锻炼强健的身心。

城市规划局希望活动中心的位置满足以下条件:

1. 到所有居住地的总距离最小。

2. 为了方便活动中心的资源补给和其他器材的维护,活动中心必须建设在A市的主干道上。


为了简化问题,我们将A市摆在二维平面上,城市的主干道看作直角坐标系平的X轴,城市中所有的居住地都可以看成二维平面上的一个点。

现在,A市的城市规划局希望知道活动中心建在哪儿最好。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值