通过对比其他商用LLM的缺陷,本文详细介绍了TigerGraph CoPilot的主要功能、优点、以及两个关键用例。
近年来,数据作为一种生产要素,已经能够有能力为我们提供横跨不同行业的变革性商业见解了。不过,如何利用好可以获得的大数据,往往给我们带来了不小的挑战。一面是过载的数据,一面却是大量未被充分利用的数据孤岛。不少专业数据科学家和分析师亟待通过专业知识,让自己所在的组织能够在不牺牲性能和运营效率的情况下,及时地处理持续增长的数据,并从复杂的数据中提取潜藏在表层之下的见解。
最近,人工智能(AI)在自然语言处理方面的突破,改变了数据集中化访问的方式。通过充分利用人工智能CoPilot的实时处理和分析大规模数据的能力,更多的用户可以轻松地查询和解释复杂的数据集,进而有助于组织快速做出明智的决策。同时,人工智能CoPilot也可以通过自动化复杂的数据流程,以及授权较少的技术人员进行深层次的数据分析,管理与控制大型数据集的高昂成本,进而优化资源的整体分配。
不过,生成式AI和大语言模型(LLM并非毫无瑕疵。由于大多数LLM都建立在通用的公共知识的基础上,因此它们无法知晓特定组织的特定数据,更不用说那些机密数据了。同时,LLM除了无法了解不断变化的信息世界,另一个更为严重的问题是“幻觉”。也就是说,生成式模型在其统计过程所生成的结论,可能只是其一厢情愿,而根本不真实。
可见,我们迫切需要一种更具备上下文相关性、更少出错的AI,在预测分析和机器学习过程中,提供能够直接提升业务决策准确度的优质数据。
TigerGraph CoPilot简介
作为一款AI助手,TigerGraph CoPilot结合了图形数据库和生成式AI的功能,旨在提高分