AI 圈的朋友应该都知道吴恩达的大名,为了防止一些萌新还不知道,本菌这里先做一个简要的介绍。
吴恩达(英文名:Andrew Ng),是斯坦福大学计算机科学系和电子工程系教授,人工智能实验室主任,人工智能和机器学习领域国际上最权威的学者之一,也是在线教育平台Coursera的联合创始人(with Daphne Koller),曾担任百度公司首席科学家,负责百度研究院的领导工作,尤其是Baidu Brain计划。
他在斯坦福大学的一次深度学习课程上,亲述了如何有效阅读论文,通过论文去了解一个新的领域。
下面,我以“Deep Learing(深度学习)”这一技术领域为例子亲身示范吴恩达的论文阅读方法,整理如下:
第一步:收集并整合相关资源。
资源可以是研究论文、媒体文章、博客文章、视频、GitHub知识库等形式。
在谷歌上搜索 “Deep Learing”,你会得到与主题相关的顶级资源。这一步的目标是整理所有相关的资源。
在这个阶段,对资源数量没有限制,但一定要创建一个名单列表,用于记录有用的论文、视频和文章。
第二步:深入研究你认为与主题相关的任何资源。
在这一步中,记录并跟踪对每个资源的理解程度是至关重要的。Andrew Ng建议根据对资源的理解程度绘制一个资源表格。
确保对添加到列表中的每篇论文至少有 10-20% 的理解;这将确保你已经对收集到的资源有了足够的整体性了解,并且能够准确地衡量它的相关性。
你可能会问,“多少论文/资源算足够呢”
根据Andrew Ng的说法,理解了 5-20 篇论文的内容,那么你对该领域的研究就有了基本的理解,对该领域的相关技术也会有足够的理解。
50-100 篇论文会让你对这个领域有一个更深入的理解。
第三步:做笔记,对该领域理解的升华。
做结构化的笔记,用你自己的话总结论文中的关键发现和技巧。 如果你是工科类的,那么推荐你用博客、云笔记等去记录,因为这样更有助于你随时随地查看。特别是程序员,当你的博客积累到一定程度,得到大家的认可,在圈内也会逐渐形成自己的知名度。
一、一口气从第一个词读到最后一个词可能不是最好的方式。
通常一篇论文至少要读三遍。
- 第 1 遍:阅读标题、摘要、文中图表。
- 第 2 遍:阅读引言、结论,掌握关键信息;并结合图表快速扫描文章其余的内容。
- 第 3 遍:对论文进行整体阅读,但要跳过任何对你来说可能陌生的复杂的数学或技术公式。在此过程中,还可以跳过不理解或不熟悉的任何术语和术语。
如若要深入理解一个领域,这些公式和术语还是必须搞懂的。
二、通过问自己问题来检测对论文的理解程度
Andrew Ng提供了一组在阅读论文时应该问自己的问题。这些问题通常会表明你理解论文中提出的关键信息。我使用下面的问题作为指引,以确保不会偏离理解重要信息的目标。
- 论文的作者想要完成什么,或者已经完成了什么?
- 如果一篇论文介绍了一种新方法/技术/方法,那么该新方法的关键要素是什么?
- 论文中哪些内容对你有用?
- 你还想关注哪些参考文献?
最后,吴恩达也强调:“Learn steadily rather than short burst for longevity.”
Andrew Ng建议每个月至少阅读四篇研究论文,来达到对该领域的理解。随着对论文阅读频次的增加,阅读和理解文章的速度也会越来越快。
最近,越来越多小伙伴私信我,给我留言。但由于自己精力有限,没能一一回复,希望大家见谅。为了方便大家一起学习交流,我刚组建了一个AI学习者专属的交流群,诚邀各位的加入!