使用ollama导入模型

       ollama可以轻松在本地部署大语言模型,简单方便,并且内置了丰富的大语言模型库,涵盖多种类型的模型,可以很方便的拉取模型。但是有时候想要通过ollama部署自己的大语言模型,或者从huggingface、hf-mirror以及modelscope上下载模型,就需要先将模型导入到ollama,然后进行运行。

        目前从上面网站上下载的原始模型文件主要为.safetensors格式或者.gguf格式。

1、 导入.safetensors 模型或适配器

从safetensors权重导入模型,首先需要创建一个Modelfile文件,其中包含一个指向包含你的 Safetensors 权重的目录的 FROM 命令

模型目录应包含支持架构的 Safetensors 权重。

目前支持的模型架构:

  • Llama(包括 Llama 2、Llama 3、Llama 3.1 和 Llama 3.2)
  • Mistral(包括 Mistral 1、Mistral 2 和 Mixtral)
  • Gemma(包括 Gemma 1 和 Gemma 2)
  • Phi3

Modelfile内容包括:

        FROM <model directory>

如下,指向.safetensors文件所在的文件夹

从 Safetensors 权重导入微调适配器

Modelfile内容包括:

        FROM <base model name>

        ADAPTER <path to safetensor adapter>

目前支持的 Safetensor 适配器:

  •         Llama(包括 Llama 2、Llama 3 和 Llama 3.1)
    •         Mistral(包括 Mistral 1、Mistral 2 和 Mixtral)
      •         Gemma(包括 Gemma 1 和 Gemma 2)

从创建 Modelfile 的目录中运行 ollama create 命令

ollama create my-model-name -f <path of model_file>

另外,可以使用ollama show --modulefile <model name>查看相同架构的模型的modelfile的写法。

2、导入 GGUF 的模型或适配器

可以通过以下方式获取 GGUF 模型或适配器:

  1. 使用 Llama.cpp 中的 convert_hf_to_gguf.py 脚本将 Safetensors 模型转换为 GGUF 模型;
  2. 使用 Llama.cpp 中的 convert_lora_to_gguf.py 脚本将 Safetensors 适配器转换为 GGUF 适配器;
  3. 从 HuggingFace 等地方下载模型或适配器

要导入 GGUF 模型,创建一个 Modelfile,内容包括:

        FROM /path/to/file.gguf

与safetensors文件不同,这里直接指向gguf文件。

对于 GGUF 适配器,创建 Modelfile,内容如下:

        FROM /path/to/file.gguf

        ADAPTER /path/to/file.gguf

在导入 GGUF 适配器时,重要的是使用与创建适配器时所用的相同基础模型。

一旦你创建了 Modelfile,请使用 ollama create 命令来构建模型。

ollama create my-model-name -f <path of model_file>

3、量化模型

        量化模型可以让你以更快的速度和更少的内存消耗运行模型,但精度会有所降低        。

        Ollama 可以使用 -q/--quantize 标志与 ollama create 命令将基于 FP16 和 FP32 的模型量化为不同的量化级别。

        首先,创建一个包含你希望量化的 FP16 或 FP32 基础模型的 Modelfile。

        FROM /path/to/model

        使用 ollama create 来创建量化模型。

        ollama create --quantize q4_K_M mymodel

支持的量化方式

  • q4_0
  • q4_1
  • q5_0
  • q5_1
  • q8_0
  • q3_K_S
  • q3_K_M
  • q3_K_L
  • q4_K_S
  • q4_K_M
  • q5_K_S
  • q5_K_M
  • q6_K

4、llama.cpp的下载和安装

        llama.cpp 是一个开源项目,它提供了一种简单而高效的方法来进行模型的量化,同时还能进行模型格式的转换。对于safetensors格式的模型,有些模型ollama无法导入(如 deepseek的模型),因此需要使用llama.cpp来进行格式的转换。使用方式如下:

(1)llama.cpp下载

        git clone https://github.com/ggerganov/llama.cpp

        cd llama.cpp

(2)安装python库

        pip install -r requirements.txt

(3)将 safetensors 转换为 gguf 格式

        python convert_hf_to_gguf.py <model path> --outtype f16

        --outtype后面跟量化类型,使用f16或者f32表示不进行量化。

以上便是使用ollama导入模型的方法。

### 关于面包板电源模块 MB102 的 USB 供电规格及兼容性 #### 1. **MB102 基本功能** 面包板电源模块 MB102 是一种常见的实验工具,主要用于为基于面包板的小型电子项目提供稳定的电压输出。它通常具有两路独立的稳压输出:一路为 5V 和另一路可调电压(一般范围为 3V 至 12V)。这种设计使得它可以满足多种芯片和传感器的不同工作电压需求。 #### 2. **USB 供电方式** MB102 支持通过 USB 接口供电,输入电压通常是标准的 5V DC[^1]。由于其内部集成了 LM7805 稳压器以及可调节电位器控制的直流-直流变换电路,因此即使输入来自电脑或其他低功率 USB 设备,也能稳定地向负载供应电力。不过需要注意的是,如果项目的功耗较高,则可能超出某些 USB 端口的最大电流能力(一般是 500mA),从而引起不稳定现象或者保护机制启动断开连接的情况发生。 #### 3. **兼容性分析** 该型号广泛适用于各种微控制器单元 (MCU),特别是那些像 Wemos D1 R32 这样可以通过杜邦线轻松接入并共享相同逻辑级别的系统[^2]。另外,在提到 Arduino Uno 板时也表明了良好的互操作性,因为两者均采用相似的标准接口定义与电气特性参数设置[^4]: - 对于需要 3.3V 工作环境下的组件来说,只需调整好对应跳线帽位置即可实现精准匹配; - 当涉及到更多外围扩展应用场合下,例如带有多重模拟信号采集任务的情形里,利用 MB102 提供干净无干扰的基础能源供给就显得尤为重要了[^3]。 综上所述,对于打算构建以单片机为核心的原型验证平台而言,选用具备良好声誉记录且易于获取配件支持服务链路上下游资源丰富的品牌产品——如这里讨论过的这款特定类型的配电装置不失为明智之举之一。 ```python # 示例 Python 代码展示如何检测硬件状态 import machine pin = machine.Pin(2, machine.Pin.IN) if pin.value() == 1: print("Power supply is stable.") else: print("Check your connections and power source.") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值