深度学习
上杉绘梨衣-
少年听雨歌楼上,红烛昏罗帐,壮年听雨客舟中,江阔云低,断雁叫西风。
而今听雨僧庐下,鬓已星星也,悲欢离合总无情,一任阶前,点滴到天明。
展开
-
深度学习25个基本概念
深度学习需要掌握的25个基本概念转载 2017-07-25 11:58:18 · 718 阅读 · 0 评论 -
梯度下降小结
在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。这里就对梯度下降法做一个完整的总结。1. 梯度 在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度。比如函数f(x,y), 分别对x,y求偏导数,求得的梯度向量就是(∂f/∂x, ∂f/∂转载 2017-09-13 19:43:56 · 245 阅读 · 0 评论 -
基于Keras的深度学习的相关基础概念的讲解
深度学习目录1.softmax2.损失函数3.激活函数4.sigmoid5.ReLu6.学习速率7.Dropout一、基础篇神经网络中的每个神经元 对其所有的输入进行加权求和,并添加一个被称为偏置(bias) 的常数,然后通过一些非线性激活函数来反馈结果。1. softmaxsoftmax主要用来做多分类问题,是logistic回归模型在多分类问题上的推广,softmax 公式:当k=2时,转换为...转载 2018-03-08 14:42:19 · 416 阅读 · 0 评论