- 博客(121)
- 资源 (4)
- 收藏
- 关注
原创 Leetcode刷题板块
新板块说明本人今年准备校招,又开始重新温习一遍数据结构与算法,简单复习了一周面过了微软的STCA的暑期实习。同时也意识到等到秋招的时候,面试还是需要掌握好算法,所以开了一个专题来记录刷题历程~ 我在准备实习面试的时候花了两天刷完了剑指offer,剩余时间零零散散也简单的刷了100道leetcode,后续我会分模块整理好,希望能对看到这篇博客的人有帮助~目前安排板块主要分两类:算法与数据结构...
2020-03-04 12:29:42 218
原创 with torch.no_grad()
合理的利用torch.no_grad()可以节省显存,在推断的时候,可以少占用模型训练的时候,爆显存了,可以调整batch,对数据进行crop等等操作今天发现一个模型,训练ok,每次测试的时候爆显存。开始以为是因为用了全图(1920x1080略大)进行inference。这是一方面,但后来发现忘了用with torch.no_grad():这导致模型运算的时候不能释放显存(记录了梯度信息),所以显存巨大。加了之后,用了不过3G显存就够了。。确实inference不需要那么多显存的,以后记着这
2020-12-22 17:21:03 1267
原创 SSH登录设置别名
vim ~/.ssh/config (若不存在可以新建) Host www HostName www.ttlsa.com Port 22 User root IdentityFile ~/.ssh/id_rsa.pub IdentitiesOnly yes Host bbs HostName 115.28.45.104 User anotheruser PubkeyAuthentication no 注释 HostName 指定登录的主机名或IP地
2020-12-13 20:30:22 610
原创 免密登陆简介版
SSH 三步解决免密登录1.客户端生成公私钥2.上传公钥到服务器3.测试免密登录1.客户端生成公私钥本地客户端生成公私钥:ssh-keygen上面这个命令会在用户目录.ssh文件夹下创建公私钥cd ~/.sshls下创建两个密钥:id_rsa (私钥)id_rsa.pub (公钥)2.上传公钥到服务器这里测试用的服务器地址为:192.168.235.22用户为:rootssh-copy-id -i ~/.ssh/id_rsa.pub root@192.
2020-05-08 19:04:08 377
原创 ACWing-剑指Offer-不修改数组找出重复的数字
题目链接:https://www.acwing.com/problem/content/description/15/题目描述:给定一个长度为 n+1 的数组nums,数组中所有的数均在 1∼n 的范围内,其中 n≥1。请找出数组中任意一个重复的数,但不能修改输入的数组。样例给定 nums = [2, 3, 5, 4, 3, 2, 6, 7]。返回 2 或 3。思考题:如...
2020-04-03 18:37:48 252
原创 Leetcode-剑指offer-面试题4-二维数组中的查找
Leetcode链接:https://leetcode-cn.com/problems/er-wei-shu-zu-zhong-de-cha-zhao-lcof/题目描述:在一个 n * m 的二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。示例:现有矩...
2020-04-02 11:42:25 252
原创 Leetcode-剑指offer-3-数组中重复的数字
Leetcode 链接:https://leetcode-cn.com/problems/shu-zu-zhong-zhong-fu-de-shu-zi-lcof/题目描述:找出数组中重复的数字。在一个长度为 n 的数组 nums 里的所有数字都在 0~n-1 的范围内。数组中某些数字是重复的,但不知道有几个数字重复了,也不知道每个数字重复了几次。请找出数组中任意一个重复的数字。...
2020-04-02 11:21:56 181
原创 Leetcode-剑指offer-斐波那契数列-矩阵快速幂实现
前情本文内容首先需要了解快速幂的实现原理,详情见pow(x, n)快速幂实现题目leetcode链接:https://leetcode-cn.com/problems/fei-bo-na-qi-shu-lie-lcof/题目描述:写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项。斐波那契数列的定义如下:F(0) = 0, F(1)= 1...
2020-04-01 18:45:52 1238
原创 Leetcode-50-Pow(x, n) 快速幂的简单实现
leetcode链接:https://leetcode-cn.com/problems/powx-n/题目描述:实现 pow(x, n) ,即计算 x 的 n 次幂函数。样例示例 1:输入: 2.00000, 10输出: 1024.00000示例2:输入: 2.10000, 3输出: 9.26100示例3:输入: 2.00000, -2输出: 0.25...
2020-04-01 17:16:32 262
原创 Leetcode-剑指offer-01-用两个栈实现队列
用两个栈实现队列leetcode链接:https://leetcode-cn.com/problems/yong-liang-ge-zhan-shi-xian-dui-lie-lcof/题目如下:用两个栈实现一个队列。队列的声明如下,请实现它的两个函数 appendTail 和 deleteHead ,分别完成在队列尾部插入整数和在队列头部删除整数的功能。(若队列中没有元素,delet...
2020-03-31 18:22:03 184
转载 EarlyStopping
EarlyStopping是什么EarlyStopping是Callbacks的一种,callbacks用于指定在每个epoch开始和结束的时候进行哪种特定操作。Callbacks中有一些设置好的接口,可以直接使用,如’acc’,’val_acc’,’loss’和’val_loss’等等。 EarlyStopping则是用于提前停止训练的callbacks。具体地,可以达到当训练集上的loss不在...
2018-03-30 15:41:50 5008 2
原创 python self简介
在介绍Python的self用法之前,先来介绍下Python中的类和实例…… 我们知道,面向对象最重要的概念就是类(class)和实例(instance),类是抽象的模板,比如学生这个抽象的事物,可以用一个Student类来表示。而实例是根据类创建出来的一个个具体的“对象”,每一个对象都从类中继承有相同的方法,但各自的数据可能不同。 1、以Student类为例,在Python中,定义类如下:cla...
2018-03-24 14:39:10 240
转载 基于Keras的深度学习的相关基础概念的讲解
深度学习目录1.softmax2.损失函数3.激活函数4.sigmoid5.ReLu6.学习速率7.Dropout一、基础篇神经网络中的每个神经元 对其所有的输入进行加权求和,并添加一个被称为偏置(bias) 的常数,然后通过一些非线性激活函数来反馈结果。1. softmaxsoftmax主要用来做多分类问题,是logistic回归模型在多分类问题上的推广,softmax 公式:当k=2时,转换为...
2018-03-08 14:42:19 416
原创 python虚拟环境--virtualenv
python虚拟环境--virtualenv virtualenv 是一个创建隔绝的Python环境的工具。virtualenv创建一个包含所有必要的可执行文件的文件夹,用来使用Python工程所需的包。 安装pip install virtualenv 基本使用为一个工程创建一个虚拟环境:$ cd my_project_dir$ virtualenv venv #venv为虚拟环境目录...
2018-03-06 21:16:57 336
原创 神经网络的有趣的浅显解释
神经网络一点都不难神经网络很萌的神经网络分类神经网络最重要的用途是分类,为了让大家对分类有个直观的认识,咱们先看几个例子:垃圾邮件识别:现在有一封电子邮件,把出现在里面的所有词汇提取出来,送进一个机器里,机器需要判断这封邮件是否是垃圾邮件。疾病判断:病人到医院去做了一大堆肝功、尿检测验,把测验结果送进一个机器里,机器需要判断这个病人是否得病,得的什么病。猫狗分类:有一大堆猫、狗照片,把每一张照片送...
2018-02-28 12:00:17 733 3
转载 Graph Attention Network
【新智元导读】Yoshua Bengio 团队日前提出了一种名叫图谱注意力网络(Graph Attention Network,GAT)的新型神经网络架构,探讨将图谱(Graph)作为输入的情况下如何用深度学习完成分类、预测等问题,相关论文已经提交ICLR-18审核。作者邓侃认为,图(Graph)作为一种表达方式,能够表达很多知识,Bengio研究组的这篇论文虽然尚未在业界引发巨大反响,但其结
2018-01-19 18:15:21 4483 3
原创 Giraph 1.0集群环境配置
环境说明以下配置过程在实验室集群,深圳集群,腾讯云集群上均测试成功,系统包括CentOS,UbuntuHadoop-1.0.2Giraph-1.0.0Jdk1.7 下面详细叙述一下在实验室集群上面配置的细节系统环境Distributor ID: UbuntuDescription: Ubuntu 16.04.3 LTSRelease: 16.04
2018-01-18 19:29:02 721
原创 关于Hadoop任务的学习
其实之前只是会配置环境,对详细细节甚至具体的编程真心不太了解,上网搜到了比较好的资源在此mark一下,准备后续学习http://www.cnblogs.com/esingchan/p/3917252.html
2018-01-15 17:43:00 252
原创 北京大学2017年Web技术概论考题回忆
啦啦啦啦啦啦,Web技术概论考完了,下面放一下自己关于试题的回忆第一题 名词解释 像什么HTTP,HTML等的全称,感觉这里面比较难记的就是REST第二题 1.给出各种编程语言或者别的 像什么PHP,Applet,Ajax等,问你是运行在客户端还是运行在服务器端 2. 问为什么PHP的比CGI的要快(这些都在提纲里面有)第三题 记不太清了,有一道题是给出
2018-01-08 15:40:04 566
原创 Web技术概论复习
WEB技术概论复习名词解释1. CSS 层叠样式表 Cascading Style Sheets2. HTML 超文本标记语言 HyperText Markup Language3. HTTP 超文本传输协议 HyperText Transfer Protocol4. XML 可扩展标记语言 Extensible Markup Language5.
2018-01-07 17:04:47 1531
转载 JAVA8 lambda
Java8 lambda表达式10个示例2015/08/03 | 分类: 基础技术 | 10 条评论 | 标签: java8,lambda表达式分享到:89本文由 ImportNew - lemeilleur 翻译自 javarevisited。欢迎加入翻译小组。转载请见文末要求。Java 8 刚于几周前发布,日期是2014年3月18日,这次
2018-01-07 14:15:35 242
原创 Google 搜索的一些技巧
最近在复习web技术概论,其中涉及到google搜索的一些技巧的使用,就在网上搜集了一些中文的资料具体的操作可以参考google的官网:http://www.googleguide.com/advanced_operators_reference.html#siteGoogle是一个非常精密成熟的搜索引擎,但大多数的用户都没有能完全地利用到它的能力。一般人就是在Google的搜索框中输
2018-01-05 21:18:09 1277
原创 关于Ajax是运行在服务器端还是客户端的问题
其实对Ajax一点也不熟悉(或者说对前端这些东西一点也不熟悉),但是期末考试还要考类似的概念问题,听说会有这样的nc题,Ajax是运行在服务器端还是客户端。一开始查定义对这个了解的不太清楚,之后又查了一下细节,觉得如果这样问的话,回答只能是在客户端吧,下面是查到的一些资料什么是 AJAX ?AJAX = 异步 JavaScript 和 XML。AJAX 是一种用
2018-01-05 14:31:49 5557 1
转载 浅谈 POST 和 GET 在 Web中的应用
Http定义了与服务器交互的不同方法,最基本的方法有4种,分别是GET,POST,PUT,DELETE。URL全称是资源描述符,我们可以这样认为:一个URL地址,它用于描述一个网络上的资源,而HTTP中的GET,POST,PUT,DELETE就对应着对这个资源的查,改,增,删4个操作。到这里,大家应该有个大概的了解了,GET一般用于获取/查询资源信息,而POST一般用于更新资源信息。 1.根
2018-01-04 21:58:16 2460 2
原创 Ajax简单理解
直白地说,就是没用AJAX的网页,你点一个按钮就要刷新一下页面,尽管新页面上只有一行字和当前页面不一样,但你还是要无聊地等待页面刷新。用了AJAX之后,你点击,然后页面上的一行字就变化了,页面本身不用刷。AJAX只是一种技术,不是某种具体的东西。不同的浏览器有自己实现AJAX的组件。=====================================ajax的全称是Asynchron
2018-01-04 21:34:30 365
原创 HTTP1.1 协议 第十四章定义 头域定义
14 头域定义本节定义了所有HTTP/1.1种标准头域的语法和语义。对于实体头域,发送者和接收者指的是客户端和服务器,取决于谁发送和谁接收此实体。 14.1 AcceptAccept请求头域被用于指定服务器返回给客户端可接受的响应媒体类型。Accept头域能被用于指明请求是期望服务器返回某些期望的媒体类型的响应,例如请求一个内嵌的图像。 Accept = "A
2018-01-04 17:45:31 1036
原创 HTTP/1.1协议
HTTP是hypertext transfer protocol(超文本传输协议)的简写,它是TCP/IP协议的一个应用层协议,用于定义WEB浏览器与WEB服务器之间数据交换的过程。 1.Http1.0和1.1Http1.0:请求一次,连接自动断开。Http1.1:一次连接,可以发起多次请求。 2.在windows中使用telnet发起Http请求telnet loca
2018-01-04 17:27:35 538
转载 Cookie And Session
会话(Session)跟踪是Web程序中常用的技术,用来跟踪用户的整个会话。常用的会话跟踪技术是Cookie与Session。Cookie通过在客户端记录信息确定用户身份,Session通过在服务器端记录信息确定用户身份。本章将系统地讲述Cookie与Session机制,并比较说明什么时候不能用Cookie,什么时候不能用Session。1.1 Cookie机制在程序中,会话
2018-01-04 16:41:40 370
原创 URL相关知识
URL RFC: http://www.ietf.org/rfc/rfc1738.txtURI RFC: http://www.ietf.org/rfc/rfc2396.txt转自: http://www.w3school.com.cn/html/html_url.asp URL 也被称为网址。URL 可以由单词组成,比如 “w3school.com.cn”,或者是因特网协
2018-01-04 16:19:10 251
原创 C++ freopen简单应用
freopen以前经常使用,比较方便,可以当作模板,在中间替换为自己的代码即可使用。#include // 实际使用中发现freopen也包含在iostream.h中,C++代码#include 即可。 int main() { freopen("sample.in", "r", stdin); freopen("sampl
2017-12-31 13:39:25 6022 3
转载 SVM相关的推导
转自:http://blog.csdn.net/v_july_v/article/details/7624837前言 动笔写这个支持向量机(support vector machine)是费了不少劲和困难的,原因很简单,一者这个东西本身就并不好懂,要深入学习和研究下去需花费不少时间和精力,二者这个东西也不好讲清楚,尽管网上已经有朋友写得不错了(见文末参考链接),但在描述数
2017-12-19 13:43:49 910
原创 L0范式,L1范式,L2范式的简单理解
L0范数是指向量中非0的元素的个数。L1范数是指向量中各个元素绝对值之和。既然L0可以实现稀疏,为什么不用L0,而要用L1呢?个人理解一是因为L0范数很难优化求解(NP难问题),二是L1范数是L0范数的最优凸近似,而且它比L0范数要容易优化求解。所以大家才把目光和万千宠爱转于L1范数。L2范数是指向量各元素的平方和然后求平方根
2017-12-18 21:18:56 9566
原创 CART树剪枝的操作的理解
这里我就简单讲下CART剪枝的核心思想,纯属个人意见,如有不当,请指正。在《统计学习方法法》中已经提到了决策树的剪枝算法了,理所当然,我们是顺着书中提到的思路来理解下决策树剪枝的关键步骤。我们定义了该定义表示了决策树的损失函数。whaterver它是什么,现在有了损失函数这个衡量标准,并且假设我们已经根据training set生成了一棵复杂的决策树,且参数已知。算法该如何实现决策树的
2017-12-13 22:46:34 2257
原创 图的幂律度分布 power-law degree distributios
讲的一篇图论文中说到,“The natural graphs commonly found in the real-worldhave highly skewed power-law degree distributios……”,开始只是了解个大概,后来经查才知道。power-law degreedistributios原来是一种描述网络图中结点度的分布,中文可叫做“幂律度分布”。维基百科词条
2017-12-08 22:55:21 9012 3
转载 关于感知学习模型机中空间任一点到超平面的距离公式的推导过程
关于感知学习模型机中空间任一点到超平面的距离公式的推导过程在感知机模型中,输入空间中任意一点 到超平面S的距离:其推导过程如下:
2017-12-08 16:44:24 767
转载 EM算法的两种理解角度
最近在学习机器学习这门课,目前学到了EM算法的部分。在网上看到了一些人比较好的理解。在此记录下来EM算法即“期望极大算法”。学过机器学习的朋友都知道EM算法分两步:E步求期望,M步求极大。但是期望是求谁的期望,极大是求谁的极大呢?这里面其实有两种解读角度。“通俗”角度通俗角度的话,求极大肯定是求似然函数的极大了,而且一般都是对数似然。我们一般解决模型参数求解问题,都是在给定数据的情
2017-12-04 20:58:55 552
原创 Bagging和Boosting概念以及区别
Bagging和Boosting 概念及区别 Bagging和Boosting都是将已有的分类或回归算法通过一定方式组合起来,形成一个性能更加强大的分类器,更准确的说这是一种分类算法的组装方法。即将弱分类器组装成强分类器的方法。首先介绍Bootstraping,即自助法:它是一种有放回的抽样方法(可能抽到重复的样本)。1、Bagging (bootstrap aggregating)
2017-11-30 00:52:34 428
原创 Vim常用操作
在正常模式下(按ESC进入)按键v进入可视化模式,然后按键盘左右键或h,l键即可实现文本的选择。其它相关命令:v:按字符选择。经常使用的模式,所以亲自尝试一下它。V:按行选择。这在你想拷贝或者移动很多行的文本的时候特别有用。CTRL+v:按块选择。非常强大,只在很少的编辑器中才有这样的功能。你可以选择一个矩形块,并且在这个矩形里面的文本会被高亮。值得注意的是如果VI
2017-11-28 22:53:32 207
转载 随机森林
一、决策树决策树是机器学习最基本的模型,在不考虑其他复杂情况下,我们可以用一句话来描述决策树:如果得分大于等于60分,那么你及格了。这是一个最最简单的决策树的模型,我们把及格和没及格分别附上标签,及格(1),没及格(0),那么得到的决策树是这样的但是我们几乎不会让计算机做这么简单的工作,我们把情况变得复杂一点引用别的文章的一个例子这是一张女孩对于不同条件的男性是
2017-11-28 16:07:51 736 1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人