样式迁移笔记

样式迁移

如果你是一位摄影爱好者,也许接触过滤镜。它能改变照片的颜色样式,从而使风景照更加锐利或者令人像更加美白。但一个滤镜通常只能改变照片的某个方面。如果要照片达到理想中的样式,经常需要尝试大量不同的组合,其复杂程度不亚于模型调参。

在本节中,我们将介绍如何使用卷积神经网络自动将某图像中的样式应用在另一图像之上,即样式迁移(style transfer)[1]。这里我们需要两张输入图像,一张是内容图像,另一张是样式图像,我们将使用神经网络修改内容图像使其在样式上接近样式图像。图9.12中的内容图像为本书作者在西雅图郊区的雷尼尔山国家公园(Mount Rainier National Park)拍摄的风景照,而样式图像则是一副主题为秋天橡树的油画。最终输出的合成图像在保留了内容图像中物体主体形状的情况下应用了样式图像的油画笔触,同时也让整体颜色更加鲜艳。

Image Name

 

方法

下图用一个例子来阐述基于卷积神经网络的样式迁移方法。首先,我们初始化合成图像,例如将其初始化成内容图像。该合成图像是样式迁移过程中唯一需要更新的变量,即样式迁移所需迭代的模型参数。然后,我们选择一个预训练的卷积神经网络来抽取图像的特征,其中的模型参数在训练中无须更新。深度卷积神经网络凭借多个层逐级抽取图像的特征。我们可以选择其中某些层的输出作为内容特征或样式特征。以下图为例,这里选取的预训练的神经网络含有3个卷积层,其中第二层输出图像的内容特征,而第一层和第三层的输出被作为图像的样式特征。接下来,通过正向传播(实线箭头方向)计算样式迁移的损失函数,并通过反向传播(虚线箭头方向)迭代模型参数,即不断更新合成图像。样式迁移常用的损失函数由3部分组成:内容损失(content loss)使合成图像与内容图像在内容特征上接近,样式损失(style loss)令合成图像与样式图像在样式特征上接近,而总变差损失(total variation loss)则有助于减少合成图像中的噪点。最后,当模型训练结束时,输出样式迁移的模型参数,即得到最终的合成图像。

Image Name

 

读取内容图像和样式图像

内容图像和样式图像的尺寸并不一样。

 

预处理和后处理图像

预处理函数preprocess对输入图像在RGB三个通道分别做标准化,并将结果变换成卷积神经网络接受的输入格式。后处理函数postprocess则将输出图像中的像素值还原回标准化之前的值。由于图像打印函数要求每个像素的浮点数值在0到1之间,使用clamp函数对小于0和大于1的值分别取0和1。

 

抽取特征

使用基于ImageNet数据集预训练的VGG-19模型来抽取图像特征。

为了抽取图像的内容特征和样式特征,可以选择VGG网络中某些层的输出。一般来说,越靠近输入层的输出越容易抽取图像的细节信息,反之则越容易抽取图像的全局信息。为了避免合成图像过多保留内容图像的细节,选择VGG较靠近输出的层,也称内容层,来输出图像的内容特征。还从VGG中选择不同层的输出来匹配局部和全局的样式,这些层也叫样式层。

选择第四卷积块的最后一个卷积层作为内容层,以及每个卷积块的第一个卷积层作为样式层。

 

定义损失函数

 

内容损失

与线性回归中的损失函数类似,内容损失通过平方误差函数衡量合成图像与内容图像在内容特征上的差异。平方误差函数的两个输入均为extract_features函数计算所得到的内容层的输出。

样式损失

样式损失也一样通过平方误差函数衡量合成图像与样式图像在样式上的差异。为了表达样式层输出的样式,先通过extract_features函数计算样式层的输出。假设该输出的样本数为1,通道数为c,高和宽分别为h和w,可以把输出变换成c行hw列的矩阵X。矩阵X可以看作是由c个长度为hw的向量x_{1},...,x_{c}组成的。其中向量x_{i}代表了通道i上的样式特征。这些向量的格拉姆矩阵(Gram matrix)XX^{T}\in \mathbb{R}^{c\times c}中i行j列的元素x_{ij}即向量x_{i}x_{j}的内积,它表达了通道i和通道j上样式特征的相关性。用这样的格拉姆矩阵表达样式层输出的样式。需要注意的是,当hw的值较大时,格拉姆矩阵中的元素容易出现较大的值。此外,格拉姆矩阵的高和宽皆为通道数cc。为了让样式损失不受这些值的大小影响,下面定义的gram函数将格拉姆矩阵除以了矩阵中元素的个数,即chw。

总变差损失

有时候,学到的合成图像里面有大量高频噪点,即有特别亮或者特别暗的颗粒像素。一种常用的降噪方法是总变差降噪(total variation denoising)。假设x_{i,j}表示坐标为(i,j)的像素值,降低总变差损失

\sum_{i,j}\left | x_{i,j}-x_{i+1,j} \right |+\left | x_{i,j}-x_{i,j+1} \right |

能够尽可能使邻近的像素值相似。

 

损失函数

样式迁移的损失函数即内容损失、样式损失和总变差损失的加权和。通过调节这些权值超参数,可以权衡合成图像在保留内容、迁移样式以及降噪三方面的相对重要性。

 

创建和初始化合成图像

在样式迁移中,合成图像是唯一需要更新的变量。因此,我们可以定义一个简单的模型GeneratedImage,并将合成图像视为模型参数。模型的前向计算只需返回模型参数即可。

下面,定义get_inits函数。该函数创建了合成图像的模型实例,并将其初始化为图像X。样式图像在各个样式层的格拉姆矩阵styles_Y_gram将在训练前预先计算好。

 

训练

在训练模型时,不断抽取合成图像的内容特征和样式特征,并计算损失函数。

首先将内容图像和样式图像的高和宽分别调整为150和225像素。合成图像将由内容图像来初始化。

下面将训练好的合成图像保存起来。可以看到图中的合成图像保留了内容图像的风景和物体,并同时迁移了样式图像的色彩。因为图像尺寸较小,所以细节上依然比较模糊。

为了得到更加清晰的合成图像,可以在更大的300×450尺寸上训练。将图的高和宽放大2倍,以初始化更大尺寸的合成图像。

可以看到,由于图像尺寸更大,每一次迭代需要花费更多的时间。从训练得到的图中可以看到,此时的合成图像因为尺寸更大,所以保留了更多的细节。合成图像里面不仅有大块的类似样式图像的油画色彩块,色彩块中甚至出现了细微的纹理。

 

小结

  • 样式迁移常用的损失函数由3部分组成:内容损失使合成图像与内容图像在内容特征上接近,样式损失令合成图像与样式图像在样式特征上接近,而总变差损失则有助于减少合成图像中的噪点。
  • 可以通过预训练的卷积神经网络来抽取图像的特征,并通过最小化损失函数来不断更新合成图像。
  • 用格拉姆矩阵表达样式层输出的样式。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值