分享 f2021年迎春杯复赛题目&解析(五六年级组,未完待续版) - 家长论坛-家长交流社区-北京小升初-北京学区房-北京幼升小幼儿入园门户网站
1.算式(16 + 28 -5.3)×47÷0.9计算结果是________.
〖答案〗2021
〖考点〗计算&巧算
〖解析〗44-5.3的时候可以40-1.3=38.7,38.7×47÷0.9的时候可以先除以0.9巧算387÷9=43,43×47恰好是“头同尾和十”头同尾和十,直接头×(头+1)是4×5,尾×尾是3×7,最后20、21拼起来。
当然也可以盲猜今年年份2021
2.甲乙两只猴子一共摘了100多个桃子,然后各拿了一部分回家.若甲第一天吃了它分得的桃子总数的五分之一,第二天还是吃了分得的桃子总数的五分之一;乙第一天吃了它分得的桃子总数的五分之一,第二天吃了它余下的桃子总数的五分之一.这时两只猴子手中的桃子数量相同,那么甲一开始有________个桃子.
〖答案〗80
〖考点〗单位“1”
〖解析〗甲剩余他的3/5(1-1/5-1/5),乙剩余他的16/25(4/5×4/5),分子3和16互质,那么最后至少剩下每人48个桃子(剩下96明显不符合要求,因为即使一共199个,平均每人分到的都要少于100个,更不要说剩下96个了),那么甲是48÷3/5=80,乙是48÷16/25=75
3.三个连续奇数的乘积,是它们的和的15倍,则它们的乘积是________.
〖答案〗315
〖考点〗数论
〖解析〗设三个数非别是a-2、a、a+2
那么,(a-2)×a×(a+2)=15×3a
等号左右同时÷a
(a-2)×(a+2)=45
易得5×9=45
三个数分别是5、7、9
所以5×7×9=315
4.如图,已知正六边形ABCDEF面积是314,那么阴影部分面积总和是?(圆周率取3.14)
〖答案〗628
〖考点〗分割法
〖解析〗条件越少思路越简单,很容易分析阴影面积是和中间正六边形相关的,那么则必然需要填补中间六个空白“花瓣”,考虑分割,找到对称的位置,即图中的蓝色对蓝色、绿色对绿色。
我只画了一个,由于对称性,其余的也是相同的,那么最终正六边形被补齐,外面还剩六个等边三角形(合一起也是个正六边形)
阴影面积:314×2=628
5.实验室有甲乙两种酒精溶液,现在某容器中装有甲溶液300ml.若加入乙溶液100ml,得到的溶液酒精浓度为25%;若加入乙溶液300ml,得到的溶液酒精浓度为35%.那么加入乙溶液200ml时,得到的溶液酒精浓度为________%.
〖答案〗31
〖考点〗浓度问题
〖解析〗首先我们很容易判断乙的浓度要更高些,加入300ml乙溶液相当于先加入100ml(此时浓度25%),再加上200ml
根据溶质相等可得
400×25%+200×乙%=600×35%
中间部分的溶质为210-100=110
乙的浓度是55%
那么问题问的就是
400×25%+100×55%=500× ?(这里也可以用十字法)
155ml对应500的31%
6.右图中A,B,C,D,E,F,G,H表示1~8中的不同数字,那么五位数
〖答案〗81276
〖考点〗分解质因数、数字谜
〖解析〗认真做了第一题实际上这题会简单很多,2021=43×47
那么GH很显然是其中一个,另外的对应两个三位数的差
那么不难看出A和D是相邻的两个数,剩下的就只能分类讨论了。
这个题如果你习惯于从小到大去枚举还会占一点优势,假装GH是43,然后会首先试出答案,题目没说五位数可能是多少,就无须去试下图中右边的部分了
7.一个两位数恰有8个因数,且这8个因数的个位数字互不相同,那么这个两位数是________.
〖答案〗54
〖考点〗数论、因数个数定理(指数加一连乘积)
〖解析〗8个因数,要么是2×2×2,也就是三个因数,每一个因数都是一个;要么是2×4,也就是两个因数,其中一个因数出现一次,另一个出现3次
由于是两位数,所以枚举2*3*5;2*3*7;2*3*11;2*3*13;2*5*7.都不符合
再枚举2*3*3*3;3*2*2*2;5*2*2*2;7*2*2*2;11*2*2*2,只有第一个54符合题目要求
当然这里枚举法会耗费大量时间,不过心态相对平稳,因为用这个方法的时候就能知道这题一定可以解决
不过,如果耗费一些时间去分析,想到一些数论的内容,也能帮助我们加快筛选过程
比如:因数里肯定没有5,因为个位会不相同,如果有5,两个数就能出现个位0和个位5,较大的因数必重复
那么就可以只去验证
2*3*7;2*3*11;2*3*13;2*3*3*3;3*2*2*2;7*2*2*2;11*2*2*2
再比如:因数里有2就肯定没有1,有两个2就肯定没有3和7,有三个2就肯定没有9,上面蓝色的就排除了(2本身占位数2,2×11必定会有因数22不符合。两个2本身占2和4,那么如果有3,3×2×2重复2,如果有7,7×2重复4)
所以上面蓝色的就不存在了,只用筛选
2*3*7;2*3*13;2*3*3*3
第一个2和42重复,第二个3和13重复
8.将右图3×3方格表的每个方格染成黑色或白色,使得从A格出发,每步从一个方格走到有公共边的同色方格中,最终可以到达B格.那么总共有________种不同的染色方式.(方格表不可翻转或旋转)
〖答案〗102
〖考点〗构造、乘法原理
〖解析〗首先黑和白可以完全互换,那么结果必然是个偶数(double)
那么我可以直接把颜色换为√和x,符号相同则可以通过,那么只考虑AB都是√,最后翻倍即可
然后我随意画了一下就有这些线路可以走,而且题目中并没有说明是最短路线,也就是说还可饶,那么可能得情况就太多了
也就是说想把所有路线都找出来,显然是不可能的
接下来方法不唯一,可以分析不同数量“x”的情况
如果分析“x”的情况
①那么只有1个叉子,不论放在哪都可以走通,有7种
②那么有2个叉子,只要不挡住出入口,都可以走通,有7×6÷2-2=19种(注意不是6×5,要÷2排除多余,因为两个叉子的先后顺序不考虑,第一次放在A位置,第二次放在B位置,和第一次放在B第二次放在A相同;减去挡住入口的一个,减去挡住出口的一个)
③那么有3个叉子,这三个x不能放在一条线里,也不能有两个堵住出入口,有7×6×5÷6(这个六是三个全排列的重复情况,要排除掉,如果已经学了排列组合的,这里实际上是C63)减去一竖列1个,减去一横行1个,减去堵住入口的5个,减去堵住出口的5个,35-12=23种
④那么有4个叉子,只有放成田字格可通过,2种
最后都算上翻个倍就行:(7+19+23+2)×2=102
后面的有机会再更新了
9.甲、乙、丙、丁四只船在长江中顺流而下,匀速行驶.上午10:30丁追上丙,11:00丁追上乙,11:30丁追上甲,11:45丙追上甲,12:00乙追上甲.那么丙追上乙比丁追上丙晚了________分钟.
〖答案〗50
〖考点〗行程问题
〖解析〗
10. 四边形ABCD、CFGE均为正方形,GE的延长线与对角线AC交于点O,已知OB=OG,正方形ABCD面积为300,则阴影部分的面积是________。
〖答案〗75
〖考点〗图形面积
〖解析〗过O点向BC做垂线交BC与H,OH=OE=EC, 勾股定理,OB=OG=DG,设EC平方为1,则DG平方为4,ED平方为 3,则正方形面积OHEC:OA为对角线的大正方形为1:3,另外部分可以拆分成4个三角形,可以推出小正方形+三角形面积为整个正方形的四分之一。所以为75。
11.老虎、狐狸、猴子各三只站在 3×3 的方格表里,每个格子里站一只动物.老虎总是说真话, 狐狸总是说假话,猴子有时候说真话有时候说假话.动物管理员问了这 9 只动物 3 个问题:与你相邻的 有老虎吗?与你相邻的有狐狸吗?与你相邻的有猴子吗?每一个问题都恰好有 7 只动物说有,2 只动物 说没有.那么一共有________种可能的排列方式.(有公共边的方格视为相邻,方格表不可旋转或对称)
〖答案〗8
〖考点〗排列组合
〖解析〗
13.
最小公倍数的3倍,求这个四位数。
〖答案〗2346
〖考点〗数论
〖解析〗
14.
如图,4×4×4 正方体方格柜子中,每个单位方格内放有一个球.三台相机分别记录柜子的三视图(如右下所示).侠盗罗宾准备一次性取走其中若干个球,但不能被发现(即需保证三视图的结果不变).
(1)至多能取走多少个球?
(2)当取走球的数量最多时,有多少种不同的拿法?
〖答案〗(1)48 (2)576
〖考点〗立体几何
〖解析〗
微信公众号搜索: 北京小学学习资料 家长升学指南 关注公众号,获取最新资讯!