介绍支持向量机及其代码实现

   支持向量机

        支持向量机(Support Vector Machine, SVM)是一种强大的监督学习算法,用于解决二分类和多分类问题。核心思想是:寻找到一个最优的超平面,使间隔最大。

1.相关概念

  • 超平面(Hyperplane):在n维空间中,超平面是一个n-1维的子空间,用于将不同类别的数据分开。在二维空间中,超平面是一个直线;在三维空间中,超平面是一个平面。
  • 支持向量(Support Vectors):支持向量是离决策边界最近的数据点,这些点在确定决策边界时起关键作用。决策边界由这些支持向量决定,而与其他数据点无关。
  • 间隔(Margin):间隔是指到最近的支持向量的距离。SVM通过最大化间隔来找到最优的决策边界,以提高模型的泛化能力。

硬间隔:如果我们严格地让所有实例都不在最大间隔之间,并且位于正确的一边,这就是硬间隔分类。

硬间隔分类有两个问题:首先,它的数据是线性可分离的时候才有效,其次它对异常值非常敏感。

软间隔:为了避免以上的问题,我们可以使目标是尽可能在最大间隔宽域和限制间隔违例(即在最大间隔之上,甚至在错误的一边的实例)之间找到良好的平衡。

在SVM类中,我们可以通过超参数C来控制这个平衡:C值越小,间隔越宽,间隔违例越多,容易欠拟合;反之,C值越大,越容易过拟合。

2.工作原理

  1. 线性可分数据:对于线性可分的数据,SVM寻找一个线性超平面,将不同类别的数据完全分开,并且最大化间隔。
  2. 线性不可分数据:对于线性不可分的数据,SVM通过用软间隔(Soft Margin)和惩罚参数(C),允许一些数据点位于错误的一侧,来找到最优的决策边界。
  3. 非线性数据:对于非线性数据,SVM通过核函数(Kernel Function)将数据映射到高维空间,使其线性可分。

假设给定一个特征空间上的训练集为: 

 

显然,通过y(x)目标函数可以得到超平面,再通过sign函数将相应的值分类到0或1上完成分类。 

其实,也就是我们要去求一组参数(w,b),使其构建的超平面函数能够最优的分离两个集合。

那怎么获得参数呢? 

 

 

SVM损失函数

支持向量机(SVM)在分类问题中使用的损失函数是"hinge loss"(铰链损失),它通常被用于最大间隔分类,即寻找能够最大化分类间隔的超平面。而在SVM中,我们主要讨论三种损失函数:

 

绿色:0/1损失:

1)当正例的点落在y=0这个超平面的下边,说明是分类正确,无论距离超平面所远多近,误差都是0。

2)当这个正例的样本点落在y=0的上方的时候,说明分类错误,无论距离多远多近,误差都为1。

3)图像就是上图绿色线。

蓝色:SVMHinge损失函数:

1)当一个正例的点落在y=1的直线上,距离超平面长度1,那么1-E=1,E=0,也就是说误差为0。

2)当它落在距离超平面0.5的地方,1-E=0.5,=0.5,也就是说误差为0.5。

3)当它落在y=0上的时候,距离为0,1-E=0,ε=1,误差为1。

4)这个点落在了y=0的上方,被误分到了负例中,距离算出来应该是负的,比如-0.5,那么1-=-0.5,E=-1.5.误差为1.5。

5)以此类推,画在二维坐标上就是上图中蓝色那根线了。

红色:Logistic损失函数:

1)损失函数的公式为:ln(1+e^-yi)

2)当yi=0时,损失等于In2,这样真丑,所以我们给这个损失函数除以ln2。

3)这样到yi=0时,损失为1,即损失函数过(0,1),即点上图中的红色线。

 

 

SVM的核方法

核函数:是将原始输入空间映射到新的特征空间,从而,使得原本线性不可分的样本可能在核空间可分。核函数并不是SVM特有的,核函数可以和其他算法也进行结合,只是核函数与SVM结合的优势非常大。

 

常见核函数: 

 

3.优点与缺点   

SVM算法的优点:

1)SVM方法既可以用于分类(二/多分类),也可用于回归和异常值检测。

2)SVM具有良好的鲁棒性,对未知数据拥有很强的泛化能力,特别是在数据量较少的情况下,相较其他传统机器学习算法具有更优的性能。

使用SVM作为模型时,通常采用如下流程:

1)对样本数据进行归一化

2)应用核函数对样本进行映射(最常采用和核函数是RBF和Linear,在样本线性可分时,Linear效果要比RBF好)

3)用cross-validation和grid-search对超参数进行优选

4)用最优参数调练得到模型

5)测试

SVM算法的缺点:
1)计算复杂度高
2)参数选择困难

4.代码实现 

1.加载数据集,并进行特征划分

iris = datasets.load_iris()
X = iris.data[:, [2, 3]]  # 按花瓣划分
# X = iris.data[:,[0,1]]   #按花萼划分
y = iris.target
print('Class labels:', np.unique(y))  # 分类标签列表 [0 1 2]

 结果:

2.划分数据集和测试集

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1, stratify=y)
print('Labels counts in y:', np.bincount(y))  # 原数据集中各分类标签出现次数 [50 50 50]
print('Labels counts in y_train:', np.bincount(y_train))  # 训练集中各分类标签出现次数 [35 35 35]
print('Labels counts in y_test:', np.bincount(y_test))  # 测试集中各分类标签出现次数 [15 15 15]  35:15=7:3

 结果:

3.数据预处理:数据标准化

sc = StandardScaler()  # 定义一个标准缩放器
sc.fit(X_train)  # 计算均值、标准差
X_train_std = sc.transform(X_train)  # 使用计算出的均值和标准差进行标准化
X_test_std = sc.transform(X_test)  # 使用计算出的均值和标准差进行标准化

 4.绘制决策边界

X_combined_std = np.vstack((X_train_std, X_test_std))  # 竖直堆叠
y_combined = np.hstack((y_train, y_test))  # 水平拼接


def plot_decision_regions(X, y, classifier, test_idx=None, resolution=0.02):
    #  设置标记生成器和颜色图
    markers = ('s', '^', 'o', 'x', 'v')  # 标记生成器
    colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')  # 定义颜色图
    cmap = ListedColormap(colors[:len(np.unique(y))])

    #  绘制决策曲面
    x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1  # x轴范围 x1_min ~ x1_max
    x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1  # y轴范围 x2_min ~ x2_max
    xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),  # 生成网络点坐标矩阵
                           np.arange(x2_min, x2_max, resolution))
    Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
    Z = Z.reshape(xx1.shape)  # 对不同分类进行标记
    plt.contourf(xx1, xx2, Z, alpha=0.3, cmap=cmap)  # 生成边界图
    plt.xlim(xx1.min(), xx1.max())
    plt.ylim(xx2.min(), xx2.max())

    #  绘制 所有样本 散点图
    for idx, cl in enumerate(np.unique(y)):
        plt.scatter(x=X[y == cl, 0],  # 散点的x坐标(分类标签==cl)
                    y=X[y == cl, 1],  # 散点的y坐标(分类标签==cl)
                    alpha=0.8,  # 散点的透明度
                    c=colors[idx],  # 散点的颜色
                    marker=markers[idx],  # 散点的样式
                    label=cl,  # 散点的图例名称
                    edgecolor='black')  # 散点的边缘颜色

    #  绘制 测试样本 散点图
    if test_idx:  # 默认test_idx=None 如果未设置该参数,则不绘制测试样本
        X_test, y_test = X[test_idx, :], y[test_idx]

        plt.scatter(X_test[:, 0],  # 散点的横坐标
                    X_test[:, 1],  # 散点的纵坐标
                    c='y',  # 散点的颜色【黄色】
                    edgecolor='black',  # 散点的边缘颜色【黑色】
                    alpha=1.0,  # 散点的透明度【1】
                    linewidth=1,  # 散点的边缘线宽【1】
                    marker='*',  # 散点的样式【圆圈】
                    s=150,  # 散点的面积【150】
                    label='test set')  # 散点的图例名称【test set】

5.训练SVM模型

svm = SVC(kernel='linear', C=1.0, random_state=1)  # 定义线性支持向量分类器 (linear为线性核函数)
svm.fit(X_train_std, y_train)  # 根据给定的训练数据拟合训练SVM模型
plot_decision_regions(X_combined_std, y_combined, classifier=svm, test_idx=range(105, 150))  # 绘制决策边界

plt.xlabel('petal length [standardized]')  # x轴标签
plt.ylabel('petal width [standardized]')  # y轴标签
plt.legend(loc='upper left')  # 图例位于左上方
plt.tight_layout()  # 使子图填充整个图像区域
# plt.savefig('images/03_11.png', dpi=300)
plt.show()

6.预测训练集 

y_pred = svm.predict(X_test_std)  # 用训练好的分类器svm预测数据X_test_std的标签
print('Misclassified samples: %d' % (y_test != y_pred).sum())  # 输出错误分类的样本数
print('Accuracy: %.2f' % svm.score(X_test_std, y_test))  # 输出分类准确率

 全部代码

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from matplotlib.colors import ListedColormap
from sklearn.svm import SVC

#  加载样本数据及其分类标签
iris = datasets.load_iris()
X = iris.data[:, [2, 3]]  # 按花瓣划分
# X = iris.data[:,[0,1]]   #按花萼划分
y = iris.target

print('Class labels:', np.unique(y))  # 分类标签列表 [0 1 2]
# np.unique(arr): arr为一维数组/列表,结果返回一个列表,去除arr中重复的元素,并从小到大排序


#  划分70%训练集和30%测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1, stratify=y)
"""
train_test_split()函数: 用于将数据集划分为训练集train和测试集test
X: 待划分的样本特征集
y: 数据集X对应的标签
test_size: 0~1表示测试集样本占比、整数表示测试集样本数量
random_state: 随机数种子。在需要重复实验的时候保证得到一组一样的随机数据。每次填1(其他参数一样),每次得到的随机数组一样;每次填0/不填,每次都不一样
stratify=y: 划分数据集时保证每个类别在训练集和测试集中的比例与原数据集中的比例相同
"""

print('Labels counts in y:', np.bincount(y))  # 原数据集中各分类标签出现次数 [50 50 50]
print('Labels counts in y_train:', np.bincount(y_train))  # 训练集中各分类标签出现次数 [35 35 35]
print('Labels counts in y_test:', np.bincount(y_test))  # 测试集中各分类标签出现次数 [15 15 15]  35:15=7:3
# np.bincount(arr): 返回一个数组array,长度=max(arr[i])+1,array[i]=count(arr[i])。(长度=arr中最大元素值+1,每个元素值=它当前索引值在arr中出现的次数)


#  标准化训练集和测试集
sc = StandardScaler()  # 定义一个标准缩放器
sc.fit(X_train)  # 计算均值、标准差
X_train_std = sc.transform(X_train)  # 使用计算出的均值和标准差进行标准化
X_test_std = sc.transform(X_test)  # 使用计算出的均值和标准差进行标准化
"""
! StandardScaler()
均值:对每个特征求均值,即对每列求均值
去均值:每个特征的值减去对应特征的均值
标准差:去均值后平方和,然后除以总值的数量,最后开根号
标准分数:去均值、除以标准差
1、中心化:去均值,将整体数据平移,中心为(0,0)
2、缩放:标准分数,进行缩放
标准化:去均值、除以标准差。将数据的分布转为正态分布。每个特征的值 均值=0、方差=1
    目的:
        将特征表现为标准正态分布数据。
        如果某个特征的方差比其他特征大几个数量级,那么它就会在学习算法中占据主导位置,导致学习器不能从其他特征中学习,从而降低精度。
		加快梯度下降求解的速度。
"""


# 绘制决策边界图 函数
def plot_decision_regions(X, y, classifier, test_idx=None, resolution=0.02):
    #  设置标记生成器和颜色图
    markers = ('s', '^', 'o', 'x', 'v')  # 标记生成器
    colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')  # 定义颜色图
    cmap = ListedColormap(colors[:len(np.unique(y))])

    #  绘制决策曲面
    x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1  # x轴范围 x1_min ~ x1_max
    x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1  # y轴范围 x2_min ~ x2_max
    xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),  # 生成网络点坐标矩阵
                           np.arange(x2_min, x2_max, resolution))
    Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
    Z = Z.reshape(xx1.shape)  # 对不同分类进行标记
    plt.contourf(xx1, xx2, Z, alpha=0.3, cmap=cmap)  # 生成边界图
    plt.xlim(xx1.min(), xx1.max())
    plt.ylim(xx2.min(), xx2.max())

    #  绘制 所有样本 散点图
    for idx, cl in enumerate(np.unique(y)):
        plt.scatter(x=X[y == cl, 0],  # 散点的x坐标(分类标签==cl)
                    y=X[y == cl, 1],  # 散点的y坐标(分类标签==cl)
                    alpha=0.8,  # 散点的透明度
                    c=colors[idx],  # 散点的颜色
                    marker=markers[idx],  # 散点的样式
                    label=cl,  # 散点的图例名称
                    edgecolor='black')  # 散点的边缘颜色

    #  绘制 测试样本 散点图
    if test_idx:  # 默认test_idx=None 如果未设置该参数,则不绘制测试样本
        X_test, y_test = X[test_idx, :], y[test_idx]

        plt.scatter(X_test[:, 0],  # 散点的横坐标
                    X_test[:, 1],  # 散点的纵坐标
                    c='y',  # 散点的颜色【黄色】
                    edgecolor='black',  # 散点的边缘颜色【黑色】
                    alpha=1.0,  # 散点的透明度【1】
                    linewidth=1,  # 散点的边缘线宽【1】
                    marker='*',  # 散点的样式【圆圈】
                    s=150,  # 散点的面积【150】
                    label='test set')  # 散点的图例名称【test set】


"""
print(np.arange(x1_min, x1_max, resolution).shape)  # 265
print(np.arange(x2_min, x2_max, resolution).shape)  # 258
print(xx1.shape)    # 258*265   # 258个相同的x值(x1范围),因为有258个不同y值,说明一个x值对应258个不同y【x坐标竖直复制258份】
print(xx2.shape)    # 258*265   # 265个相同的y值(x2范围),因为有265个不同x值,说明一个y值对应265个不同x【y坐标水平复制265份】
print(xx1.ravel().shape)    # 68370 =258*265
print(xx2.ravel().shape)    # 68370 =258*265
print(np.array([xx1.ravel(), xx2.ravel()]).shape)   # 2*68370
print(np.array([xx1.ravel(), xx2.ravel()]).T.shape) # 68370*2
Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
print(Z.shape)  # 1*68370
Z = Z.reshape(xx1.shape)
print(Z.shape)  # 258*265   # 预测出网格点的每个分类,reshape成258行预测结果,每行265个具体预测值
x=X[y == 0, 0]  # 分类y=0的x坐标(第二个位置参数=1时为y坐标)
print(X.shape)  # 150*2
print(x.shape)  # 1*50
print(X[range(105, 150), :].shape)  # 45*2
"""

# Training a svm model using the standardized training data
X_combined_std = np.vstack((X_train_std, X_test_std))  # 竖直堆叠
y_combined = np.hstack((y_train, y_test))  # 水平拼接
"""
np.vstack(tup): tup为一个元组,返回一个竖直堆叠后的数组
np.hstack(tup): tup为一个元组,返回一个水平拼接后的数组
"""

#  训练线性支持向量机
svm = SVC(kernel='linear', C=1.0, random_state=1)  # 定义线性支持向量分类器 (linear为线性核函数)
svm.fit(X_train_std, y_train)  # 根据给定的训练数据拟合训练SVM模型
plot_decision_regions(X_combined_std, y_combined, classifier=svm, test_idx=range(105, 150))  # 绘制决策边界

plt.xlabel('petal length [standardized]')  # x轴标签
plt.ylabel('petal width [standardized]')  # y轴标签
plt.legend(loc='upper left')  # 图例位于左上方
plt.tight_layout()  # 使子图填充整个图像区域
# plt.savefig('images/03_11.png', dpi=300)
plt.show()

#  使用测试集进行数据预测
y_pred = svm.predict(X_test_std)  # 用训练好的分类器svm预测数据X_test_std的标签
print('Misclassified samples: %d' % (y_test != y_pred).sum())  # 输出错误分类的样本数
print('Accuracy: %.2f' % svm.score(X_test_std, y_test))  # 输出分类准确率
"""
! (arr1 != arr2).sum():
arr1、arr2为数组类型
(arr1 != arr2): 输出一个列表,元素为bool类型,两数组对应位置不相等为True
.sum(): 统计列表中True的个数
! svm.score(X_test_std, y_test)
返回给定测试集与对应标签的平均准确率
"""

 结果:

  • 20
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值