基于距离公式的三角模糊数TOPSIS多属性决策方法及matlab应用

本文介绍了如何使用基于三角模糊数的距离公式来构建TOPSIS多属性决策方法,详细阐述了包括欧氏距离、L2-metric距离等在内的四种距离公式,并给出了MATLAB程序实现,通过六个步骤对决策方案进行排序。
摘要由CSDN通过智能技术生成

上一篇使用三角模糊数去模糊的方法构建了TOPSIS多属性决策方法,这篇使用三角模糊数的距离公式构建TOPSIS多属性决策方法。

1.模糊理想解与距离公式
在这里插入图片描述
我们选择以下4种距离公式,度量各个方案与模糊理想解之问的分离程度,包括Euclidean距离、L2-metric距离、Dp,q距离、Hausdorff距离等。
在这里插入图片描述
在这里插入图片描述
2.排序步骤与matlab程序
基于TOPSIS法的三角模糊数型多属性决策问题的排序步骤如下:
步骤1:依据方案X关于属性G的属性值,构造模糊决策矩阵A;
步骤2:将A转化为规范化矩阵B,并构造加权规范化决策矩阵R;
步骤3:确定模糊理想解与模糊负理想解;
步骤4:根据三角模糊数距离公式,计算得到各决策方案与模

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计量小虫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值