开篇-HOG提取训练检测+样本制作利用HOG特征训练分类器说明文档-By miracled整体框架: 样本制作+训练+检测 - (vs2008 + opencv2.3.1 + libsvm(可换用svmlight需改动部分源代码))1. 样本制作:Make_Sample类1.1功能大致如下(如需要详细的介绍,请直接参看源码) Make_Sample() : 加载抠选参数可以采用这种方式,构造实例。 Make_Sample(Size winSize,Point tl = Point(),double ratios = 1.0,int numPerPic = 1); winsize:指定抠选区域的大小 tl:指定抠选窗口的左上顶点,如果为(-1,-1)则随机在输入图像有效区域内随机选取。 ratios:指定输入图像的缩放比例,如果 <0则随机有效的比率。最大比率定义在make_sample.h中的MAXRATIOS中,可以自行修改。 numPerPic:指定每张输入图片中输出样本的数量,为随机抠选选项。 int Make(string root,string type,string savePath,void (*Proccess)(Mat& ) = 0); root:输入图片的路径。 type:输入图片的格式。 savePath:抠选样本保存的路径。 void Process(Mat& image):图像的预处理函数,这个函数可以自行编写你的预处理过程。 int Make(string parmFile, string savePath,void (*Proccess)(Mat& ) = 0); parmFile:抠选参数,形如 G:/database/test/imagexx.jpg 0 0 128 64 1 G:/database/test/366.jpg 0 0 128 64 1 G:/database/test/1568.jpg 0 0 128 64 1 G:/database/test/1939.jpg 0 0 128 64 1 path (x,y) winSize ratios // 路径 左上顶点 窗口大小 缩放比例 savePath:样本保存路径。 void Process(Mat& image):自定义预处理函数。 2. 训练2.1 HOG特征提取(使用前请参看后面的5个注意事项) bool initHogs(int num); 功能:初始化训练参数 num:提取样本的个数 void DetectPacket(Mat& img,Mat& grad_ang); 功能:计算输入图像img的角度和梯度,保存在grad_ang中 void calculateHogs(Mat& grad_ang,Point tl); 功能:计算一张大图中以tl为左上顶点检测窗口的HOG特征(为检测和寻找困难样本而设置) grad_ang:梯度和角度 tl:检测窗口的左上顶点 void calculateHogs(Mat& grad_ang,int ipic); 功能:计算样本大小,第ipic个样本的HOG特征(为训练而设置) grad_ang:梯度和角度 ipic:样本的编号。 void saveHog(char *hpath,int label,bool iscls = false) const; 功能:保存训练得到的hog特征 hapth:保存的全路径 label:保存的标签 iscls:是否清除上次保存的结果,默认不清除,使用append写入。 Mat getHogs() const { return vfeature; } 功能:获取训练得到的hog特征 float *getHogs(int ipic) const 功能:获取索引为ipic的样本hog特征 int FeatureLength() const { return parm.len; } 功能:获取特征的维数 int Height() const { return parm.height; } 功能:获取检测窗口的高度 int Width() const { return parm.width; } 功能:获取检测窗口的宽度2.2使用hog特征需要注意的几点: 1、只定义了9方向 2、只定义L2归一化 3、需要使用请解开//#define _GAMMA_COMPRESS_的注释 4、高斯加权模板采用的16x16的如果block大小不是(16,16)则需要改动,请参看并修改static double* getGaussMask()函数 5、提取前需要加载配置文件Hogcfg.ini width: 128 height: 64 block: 2 cell: 8 normt: 0 //这个参数预留,需要自己添加block归一化方法3. 训练分类器3.1获取训练数据 void getTrainData(char *root, char *type, int label, char *matlab_data) 功能:获取hog训练数据。 root:当前训练样本位置 type:训练样本格式 label:训练样本标签 matlab_data:训练样本保存名称 注意:样本必须同检测窗口大小,并且具有相同的标签,例如 getTrainData("G:/database/car_detect/pos4/",".jpg",1,"train.txt"); getTrainData("G:/database/car_detect/neg4/",".jpg",-1,"train.txt"); 保存名称需要相同,不然需要自己黏贴 到一个文件中参与训练。3.2 训练 step1:训练一轮 训练方法主要有两种 第一种: 需要下载libsvm,使用其中的svm-train.exe文件 已经打包到一起了,在根目录下找到training_bat.bat,将其中的train.txt修改成你的训练数据名字,双击运行training_bat.bat就可以直接训练一轮得到一个libsvm的model,想自己设定参数请参看svm-train-usage.txt,如何使用svm-train.exe文件。 第二种: 使用matlab训练,不过需要修改hog特征提取中的 void saveHog(char *hpath,int label,bool iscls = false) const方法。然后将训练数据加载到matlab里训练就可以了。注:这里得到的libsvm-model都比较大,如果使用的是线性的model的话,使用void changeModel(char *modelname,char *newmodelname,int fealen)方法转化一下就可以得到一个比较小的model, modelname:libsvm的model, newmodelname:自定义保存model的名字, fealen:特征的维数,使用第二种方式训练的在matlab中转化可以参看源码(很简单的)。 step2:搜索困难样本 void findHardSample(char *modelname,char *hardroot,char *type,char *matlab_hard); 功能:利用训练好的线性模型搜索困难样本集,将困难样本数据保存在matlab_hard中 modelname:一个已训练好的线性mode hardroot:困难样本集路径 type:样本扩展名 matlab_hard:保存困难样本的文件名step2完成以后,挑选需要再次训练的困难样本与第一轮训练的数据合并,重复step1可以得到最终的分类器。3. 检测 int detectCar(char *modelname,char *imfile); 功能:检测一张图片中是否含有目标。 modelname:分类器的路径 imfile:图片的路径注意:1、显示结果请打开//#define _SHOW_DETECT_RESULT_前的注释2、关于多框的问题请调节,一下方法,具体如何调节请参看源码或网络 //PostProcess(carRect,1); PostProcess(carRect,2); //RemoveCoveredRectangles(carRect);使用注意事项:code供学习使用,本人测试能用于检测,但不保证没有任何bug。
HOG提取训练检测
最新推荐文章于 2018-07-08 18:20:24 发布