Emgu CV3+C#图像处理(七):使用HOG描述符进行行人检测

按照Emgu CV3+C#图像处理(一)新建一个C#控制台应用程序,然后引用相应的dll文件。
使用 HOGDescriptor()创建一个新的HOG描述符检测器,然后利用其类方法 DetectMultiScale()

示例:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

using System.Drawing;

using Emgu.CV;
using Emgu.CV.CvEnum;
using Emgu.CV.UI;
using Emgu.CV.Structure;
using Emgu.CV.Util;

namespace ConsoleApplication
{
    class Program
    {
        static void Main(string[] args)
        {

            String imagePath = "E:\\image\\pedestrian.jpg";
            Image<Bgr, Byte> image = new Image<Bgr, byte>(imagePath);


            #region use MCvObjectDetection.Rect
            MCvObjectDetection[] regions;
            using (HOGDescriptor des = new HOGDescriptor())
            {
                des.SetSVMDetector(HOGDescriptor.GetDefaultPeopleDetector());
                regions = des.DetectMultiScale(image);
            }
            foreach (MCvObjectDetection pedestrain in regions)
                image.Draw(pedestrain.Rect, new Bgr(Color.Blue), 2);
            CvInvoke.Imshow("image", image);
            CvInvoke.WaitKey(0);
            #endregion

            //#region use Rectangle
            //using (HOGDescriptor des = new HOGDescriptor())
            //{
            //    des.SetSVMDetector(HOGDescriptor.GetDefaultPeopleDetector());
            //    MCvObjectDetection[] regions = des.DetectMultiScale(image);
            //    //绘制结果
            //    for (int i = 0; i < regions.GetLength(0); i++)
            //    {
            //        Rectangle rectangle = regions[i].Rect;
            //        CvInvoke.Rectangle(image, rectangle, new MCvScalar(125, 255, 0), 2);
            //    }
            //}
            //CvInvoke.Imshow("image", image);
            //CvInvoke.WaitKey(0);
            //#endregion

        }
    }
}

这里写图片描述


Emgu CV (Open CV)::Pedestrian Detection in CSharp

Emgu CV Library Documentation::HOGDescriptor Class

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值