统计学习方法——朴素贝叶斯(一)

本文介绍了朴素贝叶斯分类方法,基于贝叶斯定律和特征条件独立假设。讲解了贝叶斯定律、朴素贝叶斯的学习与分类,包括基本方法、后验概率最大化和参数估计,如极大似然估计和贝叶斯估计。并提供了分类器的表达式和学习算法流程。
摘要由CSDN通过智能技术生成

朴素贝叶斯

朴素贝叶斯是基于贝叶斯定律特征之间条件独立这个假设的分类方法,属于生成模型

贝叶斯定律

首先,我们给出贝叶斯定律的公式:
P ( B i ∣ A ) = P ( B i ) P ( A ∣ B i ) ∑ j = 1 n P ( B j ) P ( A ∣ B j ) P\left( { {B_i}\left| A \right.} \right) = \frac{ {P\left( { {B_i}} \right)P\left( {A\left| { {B_i}} \right.} \right)}}{ {\sum\nolimits_{j = 1}^n {P\left( { {B_j}} \right)P\left( {A\left| { {B_j}} \right.} \right)} }} P(BiA)=j=1nP(Bj)P(ABj)P(Bi)P(ABi)
其中 P ( ⋅ ) P\left( \cdot \right) P()为时间发生的概率, P ( A ∣ B ) P\left( {A\left| B \right.} \right) P(AB)则表示在 B B B发生的情况下 A A A发生的概率。

当特征条件独立时,则可以写为:
P ( 类 别 ∣ 特 征 ) = P ( 特 征 ∣ 类 别 ) P ( 类 别 ) P ( 特 征 ) P\left( {类别\left| {特征} \right.} \right){\rm{ = }}\frac{ {P\left( {特征\left| {类别} \right.} \right)P\left( {类别} \right)}}{ {P\left( {特征} \right)}} P()=P()P()P()

这里不再进行过多的赘述(我觉得知道这条就足够)。下面我们开始介绍朴素贝叶斯。

朴素贝叶斯的学习与分类

基本方法

我希望尽可能说的简单一些。

训练数据集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯   , ( x N , y N ) } T = \left\{ {\left( { {x_1},{y_1}} \right),\left( { {x_2},{y_2}} \right), \cdots ,\left( { {x_N},{y_N}} \right)} \right\} T={ (x1,y1),(x2,y2),,(xN,yN)} P ( X , Y ) P\left( {X,Y} \right) P(X,Y)独立同分布产生。其中 X , Y X,Y X,Y分别是输入、输出空间 X , Y = { c 1 , c 2 , . . . , c K } \mathcal{X},\mathcal{Y}=\left\{c_1,c_2,...,c_K\right\} X,Y={ c1,c2,...,cK}的随机变量。

朴素贝叶斯法则是通过训练集学习联合概率分布 P ( X , Y ) P\left( {X,Y} \right) P(X,Y)

我们看一下详细过程:

  1. 计算先验概率分布: P ( Y = c k ) , k = 1 , 2 , . . . , K P\left( {Y = {c_k}} \right),k=1,2,...,K P(Y=ck)k=1,2,...,K
  2. 计算条件概率分布: P ( X = x ∣ Y = c k ) = P ( X ( 1 ) = x ( 1 ) , X ( 2 ) = x ( 2 ) , ⋯   , X ( n ) = x ( n ) ∣ Y = c k ) , k = 1 , 2 , ⋯   , K P\left( {X = x\left| {Y = {c_k}} \right.} \right) = P\left( { {X^{\left( 1 \right)}} = {x^{\left( 1 \right)}},{X^{\left( 2 \right)}} = {x^{\left( 2 \right)}}, \cdots ,{X^{\left( n \right)}} = {x^{\left( n \right)}}\left| {Y = {c_k}} \right.} \right),k = 1,2, \cdots ,K P(X=xY=ck)=P(X(1)=x(1),X(2)=x(2),,X(n)=x(n)Y=ck),k=1,2,,K
    意思是:在标签为 c k c_k ck时样本为 x x x的概率=标签为 c k c_k ck时,每个特征都取相应的取值时的概率。【计算很困难】
  3. 又因为作了特征之间条件独立的假设,所以上式可改写为为:
    P ( X = x ∣ Y = c k ) = ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = c k )
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值