搭建神经网络八股Sequential
import tensorflow as tf
from sklearn import datasets
import numpy as np
x_train = datasets.load_iris().data
y_train = datasets.load_iris().target
np.random.seed(116)
np.random.shuffle(x_train)
np.random.seed(116)
np.random.shuffle(y_train)
tf.random.set_seed(116)
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(3, activation='softmax', kernel_regularizer=tf.keras.regularizers.l2())
])
model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.1),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
metrics=['sparse_categorical_accuracy'])
model.fit(x_train, y_train, batch_size=32, epochs=500, validation_split=0.2, validation_freq=20)
model.summary()
Epoch 1/500
4/4 [==============================] - 0s 686us/step - loss: 0.9087 - sparse_categorical_accuracy: 0.6500
Epoch 2/500
4/4 [==============================] - 0s 497us/step - loss: 0.8218 - sparse_categorical_accuracy: 0.6917
Epoch 3/500
4/4 [==============================] - 0s 412us/step - loss: 0.7943 - sparse_categorical_accuracy: 0.7083
Epoch 4/500
4/4 [==============================] - 0s 403us/step - loss: 0.7783 - sparse_categorical_accuracy: 0.7167
Epoch 5/500
4/4 [==============================] - 0s 407us/step - loss: 0.7666 - sparse_categorical_accuracy: 0.7167
Epoch 6/500
4/4 [==============================] - 0s 404us/step - loss: 0.7601 - sparse_categorical_accuracy: 0.7167
Epoch 7/500
4/4 [==============================] - 0s 449us/step - loss: 0.7470 - sparse_categorical_accuracy: 0.7083
Epoch 8/500
4/4 [==============================] - 0s 386us/step - loss: 0.7408 - sparse_categorical_accuracy: 0.7167
Epoch 9/500
4/4 [==============================] - 0s 373us/step - loss: 0.7314 - sparse_categorical_accuracy: 0.7167
Epoch 10/500
4/4 [==============================] - 0s 411us/step - loss: 0.7233 - sparse_categorical_accuracy: 0.7167
Epoch 11/500
4/4 [==============================] - 0s 383us/step - loss: 0.7149 - sparse_categorical_accuracy: 0.7167
Epoch 12/500
4/4 [==============================] - 0s 426us/step - loss: 0.7110 - sparse_categorical_accuracy: 0.7167
Epoch 13/500
4/4 [==============================] - 0s 403us/step - loss: 0.7055 - sparse_categorical_accuracy: 0.7250
Epoch 14/500
4/4 [==============================] - 0s 360us/step - loss: 0.6954 - sparse_categorical_accuracy: 0.7167
Epoch 15/500
4/4 [==============================] - 0s 358us/step - loss: 0.6883 - sparse_categorical_accuracy: 0.7250
Epoch 16/500
4/4 [==============================] - 0s 414us/step - loss: 0.6833 - sparse_categorical_accuracy: 0.7167
Epoch 17/500
4/4 [==============================] - 0s 376us/step - loss: 0.6777 - sparse_categorical_accuracy: 0.7333
Epoch 18/500
4/4 [==============================] - 0s 376us/step - loss: 0.6713 - sparse_categorical_accuracy: 0.7417
Epoch 19/500
4/4 [==============================] - 0s 406us/step - loss: 0.6673 - sparse_categorical_accuracy: 0.7500
Epoch 20/500
4/4 [==============================] - 0s 20ms/step - loss: 0.6619 - sparse_categorical_accuracy: 0.7250 - val_loss: 0.7931 - val_sparse_categorical_accuracy: 0.5333
Epoch 21/500
4/4 [==============================] - 0s 446us/step - loss: 0.6580 - sparse_categorical_accuracy: 0.7083
Epoch 22/500
4/4 [==============================] - 0s 470us/step - loss: 0.6527 - sparse_categorical_accuracy: 0.7417
Epoch 23/500
4/4 [==============================] - 0s 369us/step - loss: 0.6471 - sparse_categorical_accuracy: 0.7417
Epoch 24/500
4/4 [==============================] - 0s 381us/step - loss: 0.6447 - sparse_categorical_accuracy: 0.7333
Epoch 25/500
4/4 [==============================] - 0s 391us/step - loss: 0.6409 - sparse_categorical_accuracy: 0.7417
Epoch 26/500
4/4 [==============================] - 0s 347us/step - loss: 0.6424 - sparse_categorical_accuracy: 0.7167
Epoch 27/500
4/4 [==============================] - 0s 376us/step - loss: 0.6317 - sparse_categorical_accuracy: 0.7417
Epoch 28/500
4/4 [==============================] - 0s 410us/step - loss: 0.6282 - sparse_categorical_accuracy: 0.7583
Epoch 29/500
4/4 [==============================] - 0s 376us/step - loss: 0.6231 - sparse_categorical_accuracy: 0.7250
Epoch 30/500
4/4 [==============================] - 0s 365us/step - loss: 0.6227 - sparse_categorical_accuracy: 0.7417
Epoch 31/500
4/4 [==============================] - 0s 319us/step - loss: 0.6197 - sparse_categorical_accuracy: 0.7333
Epoch 32/500
4/4 [==============================] - 0s 336us/step - loss: 0.6148 - sparse_categorical_accuracy: 0.7250
Epoch 33/500
4/4 [==============================] - 0s 400us/step - loss: 0.6105 - sparse_categorical_accuracy: 0.7333
Epoch 34/500
4/4 [==============================] - 0s 354us/step - loss: 0.6087 - sparse_categorical_accuracy: 0.7500
Epoch 35/500
4/4 [==============================] - 0s 315us/step - loss: 0.6060 - sparse_categorical_accuracy: 0.7583
Epoch 36/500
4/4 [==============================] - 0s 363us/step - loss: 0.6020 - sparse_categorical_accuracy: 0.7167
Epoch 37/500
4/4 [==============================] - 0s 319us/step - loss: 0.6001 - sparse_categorical_accuracy: 0.7333
Epoch 38/500
4/4 [==============================] - 0s 429us/step - loss: 0.5974 - sparse_categorical_accuracy: 0.7667
Epoch 39/500
4/4 [==============================] - 0s 361us/step - loss: 0.5949 - sparse_categorical_accuracy: 0.7583
Epoch 40/500
4/4 [==============================] - 0s 3ms/step - loss: 0.5917 - sparse_categorical_accuracy: 0.7583 - val_loss: 0.7113 - val_sparse_categorical_accuracy: 0.5333
Epoch 41/500
4/4 [==============================] - 0s 387us/step - loss: 0.5896 - sparse_categorical_accuracy: 0.7333
Epoch 42/500
4/4 [==============================] - 0s 371us/step - loss: 0.5882 - sparse_categorical_accuracy: 0.7333
Epoch 43/500
4/4 [==============================] - 0s 309us/step - loss: 0.5865 - sparse_categorical_accuracy: 0.7417
Epoch 44/500
4/4 [==============================] - 0s 356us/step - loss: 0.5812 - sparse_categorical_accuracy: 0.7500
Epoch 45/500
4/4 [==============================] - 0s 370us/step - loss: 0.5796 - sparse_categorical_accuracy: 0.7583
Epoch 46/500
4/4 [==============================] - 0s 313us/step - loss: 0.5806 - sparse_categorical_accuracy: 0.7500
Epoch 47/500
4/4 [==============================] - 0s 371us/step - loss: 0.5752 - sparse_categorical_accuracy: 0.7417
Epoch 48/500
4/4 [==============================] - 0s 349us/step - loss: 0.5745 - sparse_categorical_accuracy: 0.7333
Epoch 49/500
4/4 [==============================] - 0s 430us/step - loss: 0.5725 - sparse_categorical_accuracy: 0.7250
Epoch 50/500
4/4 [==============================] - 0s 385us/step - loss: 0.5686 - sparse_categorical_accuracy: 0.7750
Epoch 51/500
4/4 [==============================] - 0s 376us/step - loss: 0.5660 - sparse_categorical_accuracy: 0.7667
Epoch 52/500
4/4 [==============================] - 0s 377us/step - loss: 0.5640 - sparse_categorical_accuracy: 0.7667
Epoch 53/500
4/4 [==============================] - 0s 360us/step - loss: 0.5648 - sparse_categorical_accuracy: 0.7667
Epoch 54/500
4/4 [==============================] - 0s 375us/step - loss: 0.5653 - sparse_categorical_accuracy: 0.8000
Epoch 55/500
4/4 [==============================] - 0s 374us/step - loss: 0.5605 - sparse_categorical_accuracy: 0.7500
Epoch 56/500
4/4 [==============================] - 0s 355us/step - loss: 0.5597 - sparse_categorical_accuracy: 0.7417
Epoch 57/500
4/4 [==============================] - 0s 358us/step - loss: 0.5553 - sparse_categorical_accuracy: 0.7750
Epoch 58/500
4/4 [==============================] - 0s 309us/step - loss: 0.5557 - sparse_categorical_accuracy: 0.7667
Epoch 59/500
4/4 [==============================] - 0s 306us/step - loss: 0.5574 - sparse_categorical_accuracy: 0.7667
Epoch 60/500
4/4 [==============================] - 0s 3ms/step - loss: 0.5498 - sparse_categorical_accuracy: 0.7583 - val_loss: 0.6569 - val_sparse_categorical_accuracy: 0.5667
Epoch 61/500
4/4 [==============================] - 0s 335us/step - loss: 0.5506 - sparse_categorical_accuracy: 0.7500
Epoch 62/500
4/4 [==============================] - 0s 324us/step - loss: 0.5474 - sparse_categorical_accuracy: 0.7750
Epoch 63/500
4/4 [==============================] - 0s 320us/step - loss: 0.5507 - sparse_categorical_accuracy: 0.7917
Epoch 64/500
4/4 [==============================] - 0s 375us/step - loss: 0.5461 - sparse_categorical_accuracy: 0.7583
Epoch 65/500
4/4 [==============================] - 0s 378us/step - loss: 0.5428 - sparse_categorical_accuracy: 0.7667
Epoch 66/500
4/4 [==============================] - 0s 365us/step - loss: 0.5418 - sparse_categorical_accuracy: 0.7583
Epoch 67/500
4/4 [==============================] - 0s 352us/step - loss: 0.5422 - sparse_categorical_accuracy: 0.7500
Epoch 68/500
4/4 [==============================] - 0s 349us/step - loss: 0.5386 - sparse_categorical_accuracy: 0.8000
Epoch 69/500
4/4 [==============================] - 0s 315us/step - loss: 0.5424 - sparse_categorical_accuracy: 0.8000
Epoch 70/500
4/4 [==============================] - 0s 352us/step - loss: 0.5388 - sparse_categorical_accuracy: 0.7333
Epoch 71/500
4/4 [==============================] - 0s 358us/step - loss: 0.5348 - sparse_categorical_accuracy: 0.8167
Epoch 72/500
4/4 [==============================] - 0s 384us/step - loss: 0.5369 - sparse_categorical_accuracy: 0.8083
Epoch 73/500
4/4 [==============================] - 0s 319us/step - loss: 0.5316 - sparse_categorical_accuracy: 0.7750
Epoch 74/500
4/4 [==============================] - 0s 357us/step - loss: 0.5336 - sparse_categorical_accuracy: 0.8083
Epoch 75/500
4/4 [==============================] - 0s 354us/step - loss: 0.5298 - sparse_categorical_accuracy: 0.7583
Epoch 76/500
4/4 [==============================] - 0s 414us/step - loss: 0.5277 - sparse_categorical_accuracy: 0.7917
Epoch 77/500
4/4 [==============================] - 0s 350us/step - loss: 0.5284 - sparse_categorical_accuracy: 0.7833
Epoch 78/500
4/4 [==============================] - 0s 313us/step - loss: 0.5314 - sparse_categorical_accuracy: 0.7917
Epoch 79/500
4/4 [==============================] - 0s 354us/step - loss: 0.5241 - sparse_categorical_accuracy: 0.8333
Epoch 80/500
4/4 [==============================] - 0s 3ms/step - loss: 0.5237 - sparse_categorical_accuracy: 0.7750 - val_loss: 0.6107 - val_sparse_categorical_accuracy: 0.6000
Epoch 81/500
4/4 [==============================] - 0s 322us/step - loss: 0.5261 - sparse_categorical_accuracy: 0.8167
Epoch 82/500
4/4 [==============================] - 0s 357us/step - loss: 0.5217 - sparse_categorical_accuracy: 0.7750
Epoch 83/500
4/4 [==============================] - 0s 314us/step - loss: 0.5202 - sparse_categorical_accuracy: 0.8333
Epoch 84/500
4/4 [==============================] - 0s 360us/step - loss: 0.5186 - sparse_categorical_accuracy: 0.7750
Epoch 85/500
4/4 [==============================] - 0s 362us/step - loss: 0.5198 - sparse_categorical_accuracy: 0.7917
Epoch 86/500
4/4 [==============================] - 0s 301us/step - loss: 0.5189 - sparse_categorical_accuracy: 0.8000
Epoch 87/500
4/4 [==============================] - 0s 299us/step - loss: 0.5161 - sparse_categorical_accuracy: 0.7750
Epoch 88/500
4/4 [==============================] - 0s 300us/step - loss: 0.5180 - sparse_categorical_accuracy: 0.7750
Epoch 89/500
4/4 [==============================] - 0s 309us/step - loss: 0.5171 - sparse_categorical_accuracy: 0.8417
Epoch 90/500
4/4 [==============================] - 0s 299us/step - loss: 0.5147 - sparse_categorical_accuracy: 0.8083
Epoch 91/500
4/4 [==============================] - 0s 305us/step - loss: 0.5121 - sparse_categorical_accuracy: 0.8000
Epoch 92/500
4/4 [==============================] - 0s 342us/step - loss: 0.5115 - sparse_categorical_accuracy: 0.7917
Epoch 93/500
4/4 [==============================] - 0s 353us/step - loss: 0.5101 - sparse_categorical_accuracy: 0.8167
Epoch 94/500
4/4 [==============================] - 0s 297us/step - loss: 0.5122 - sparse_categorical_accuracy: 0.8083
Epoch 95/500
4/4 [==============================] - 0s 349us/step - loss: 0.5170 - sparse_categorical_accuracy: 0.7750
Epoch 96/500
4/4 [==============================] - 0s 351us/step - loss: 0.5104 - sparse_categorical_accuracy: 0.8000
Epoch 97/500
4/4 [==============================] - 0s 313us/step - loss: 0.5063 - sparse_categorical_accuracy: 0.8000
Epoch 98/500
4/4 [==============================] - 0s 295us/step - loss: 0.5065 - sparse_categorical_accuracy: 0.7917
Epoch 99/500
4/4 [==============================] - 0s 300us/step - loss: 0.5053 - sparse_categorical_accuracy: 0.8250
Epoch 100/500
4/4 [==============================] - 0s 3ms/step - loss: 0.5041 - sparse_categorical_accuracy: 0.8000 - val_loss: 0.5785 - val_sparse_categorical_accuracy: 0.7000
Epoch 101/500
4/4 [==============================] - 0s 324us/step - loss: 0.5037 - sparse_categorical_accuracy: 0.8500
Epoch 102/500
4/4 [==============================] - 0s 366us/step - loss: 0.5031 - sparse_categorical_accuracy: 0.8333
Epoch 103/500
4/4 [==============================] - 0s 305us/step - loss: 0.5014 - sparse_categorical_accuracy: 0.7750
Epoch 104/500
4/4 [==============================] - 0s 316us/step - loss: 0.5015 - sparse_categorical_accuracy: 0.8333
Epoch 105/500
4/4 [==============================] - 0s 357us/step - loss: 0.5017 - sparse_categorical_accuracy: 0.8167
Epoch 106/500
4/4 [==============================] - 0s 350us/step - loss: 0.4990 - sparse_categorical_accuracy: 0.8417
Epoch 107/500
4/4 [==============================] - 0s 308us/step - loss: 0.5004 - sparse_categorical_accuracy: 0.8333
Epoch 108/500
4/4 [==============================] - 0s 302us/step - loss: 0.4975 - sparse_categorical_accuracy: 0.8083
Epoch 109/500
4/4 [==============================] - 0s 384us/step - loss: 0.4954 - sparse_categorical_accuracy: 0.8417
Epoch 110/500
4/4 [==============================] - 0s 348us/step - loss: 0.4944 - sparse_categorical_accuracy: 0.8417
Epoch 111/500
4/4 [==============================] - 0s 338us/step - loss: 0.4940 - sparse_categorical_accuracy: 0.8417
Epoch 112/500
4/4 [==============================] - 0s 304us/step - loss: 0.4955 - sparse_categorical_accuracy: 0.8083
Epoch 113/500
4/4 [==============================] - 0s 366us/step - loss: 0.4943 - sparse_categorical_accuracy: 0.8333
Epoch 114/500
4/4 [==============================] - 0s 355us/step - loss: 0.4920 - sparse_categorical_accuracy: 0.8917
Epoch 115/500
4/4 [==============================] - 0s 404us/step - loss: 0.4935 - sparse_categorical_accuracy: 0.8333
Epoch 116/500
4/4 [==============================] - 0s 384us/step - loss: 0.4909 - sparse_categorical_accuracy: 0.8583
Epoch 117/500
4/4 [==============================] - 0s 375us/step - loss: 0.4976 - sparse_categorical_accuracy: 0.8083
Epoch 118/500
4/4 [==============================] - 0s 333us/step - loss: 0.4885 - sparse_categorical_accuracy: 0.8333
Epoch 119/500
4/4 [==============================] - 0s 305us/step - loss: 0.4912 - sparse_categorical_accuracy: 0.8000
Epoch 120/500
4/4 [==============================] - 0s 3ms/step - loss: 0.4883 - sparse_categorical_accuracy: 0.8417 - val_loss: 0.5575 - val_sparse_categorical_accuracy: 0.7333
Epoch 121/500
4/4 [==============================] - 0s 385us/step - loss: 0.4895 - sparse_categorical_accuracy: 0.8583
Epoch 122/500
4/4 [==============================] - 0s 370us/step - loss: 0.4861 - sparse_categorical_accuracy: 0.8500
Epoch 123/500
4/4 [==============================] - 0s 323us/step - loss: 0.4851 - sparse_categorical_accuracy: 0.8417
Epoch 124/500
4/4 [==============================] - 0s 333us/step - loss: 0.4873 - sparse_categorical_accuracy: 0.8250
Epoch 125/500
4/4 [==============================] - 0s 375us/step - loss: 0.4846 - sparse_categorical_accuracy: 0.8417
Epoch 126/500
4/4 [==============================] - 0s 376us/step - loss: 0.4835 - sparse_categorical_accuracy: 0.8500
Epoch 127/500
4/4 [==============================] - 0s 388us/step - loss: 0.4857 - sparse_categorical_accuracy: 0.8250
Epoch 128/500
4/4 [==============================] - 0s 319us/step - loss: 0.4828 - sparse_categorical_accuracy: 0.8250
Epoch 129/500
4/4 [==============================] - 0s 319us/step - loss: 0.4813 - sparse_categorical_accuracy: 0.8417
Epoch 130/500
4/4 [==============================] - 0s 311us/step - loss: 0.4802 - sparse_categorical_accuracy: 0.8500
Epoch 131/500
4/4 [==============================] - 0s 293us/step - loss: 0.4801 - sparse_categorical_accuracy: 0.8667
Epoch 132/500
4/4 [==============================] - 0s 367us/step - loss: 0.4792 - sparse_categorical_accuracy: 0.8667
Epoch 133/500
4/4 [==============================] - 0s 386us/step - loss: 0.4793 - sparse_categorical_accuracy: 0.8583
Epoch 134/500
4/4 [==============================] - 0s 314us/step - loss: 0.4790 - sparse_categorical_accuracy: 0.8333
Epoch 135/500
4/4 [==============================] - 0s 379us/step - loss: 0.4779 - sparse_categorical_accuracy: 0.8417
Epoch 136/500
4/4 [==============================] - 0s 317us/step - loss: 0.4779 - sparse_categorical_accuracy: 0.8417
Epoch 137/500
4/4 [==============================] - 0s 338us/step - loss: 0.4785 - sparse_categorical_accuracy: 0.8583
Epoch 138/500
4/4 [==============================] - 0s 340us/step - loss: 0.4755 - sparse_categorical_accuracy: 0.8500
Epoch 139/500
4/4 [==============================] - 0s 365us/step - loss: 0.4774 - sparse_categorical_accuracy: 0.8417
Epoch 140/500
4/4 [==============================] - 0s 3ms/step - loss: 0.4751 - sparse_categorical_accuracy: 0.8750 - val_loss: 0.5562 - val_sparse_categorical_accuracy: 0.7000
Epoch 141/500
4/4 [==============================] - 0s 349us/step - loss: 0.4741 - sparse_categorical_accuracy: 0.8583
Epoch 142/500
4/4 [==============================] - 0s 343us/step - loss: 0.4731 - sparse_categorical_accuracy: 0.8500
Epoch 143/500
4/4 [==============================] - 0s 371us/step - loss: 0.4745 - sparse_categorical_accuracy: 0.8250
Epoch 144/500
4/4 [==============================] - 0s 316us/step - loss: 0.4733 - sparse_categorical_accuracy: 0.8500
Epoch 145/500
4/4 [==============================] - 0s 405us/step - loss: 0.4747 - sparse_categorical_accuracy: 0.8750
Epoch 146/500
4/4 [==============================] - 0s 323us/step - loss: 0.4711 - sparse_categorical_accuracy: 0.8583
Epoch 147/500
4/4 [==============================] - 0s 356us/step - loss: 0.4739 - sparse_categorical_accuracy: 0.8667
Epoch 148/500
4/4 [==============================] - 0s 385us/step - loss: 0.4705 - sparse_categorical_accuracy: 0.8750
Epoch 149/500
4/4 [==============================] - 0s 375us/step - loss: 0.4732 - sparse_categorical_accuracy: 0.8583
Epoch 150/500
4/4 [==============================] - 0s 309us/step - loss: 0.4696 - sparse_categorical_accuracy: 0.8667
Epoch 151/500
4/4 [==============================] - 0s 373us/step - loss: 0.4683 - sparse_categorical_accuracy: 0.8667
Epoch 152/500
4/4 [==============================] - 0s 371us/step - loss: 0.4685 - sparse_categorical_accuracy: 0.8667
Epoch 153/500
4/4 [==============================] - 0s 325us/step - loss: 0.4673 - sparse_categorical_accuracy: 0.8667
Epoch 154/500
4/4 [==============================] - 0s 441us/step - loss: 0.4705 - sparse_categorical_accuracy: 0.8583
Epoch 155/500
4/4 [==============================] - 0s 357us/step - loss: 0.4695 - sparse_categorical_accuracy: 0.8167
Epoch 156/500
4/4 [==============================] - 0s 329us/step - loss: 0.4692 - sparse_categorical_accuracy: 0.8583
Epoch 157/500
4/4 [==============================] - 0s 361us/step - loss: 0.4693 - sparse_categorical_accuracy: 0.8750
Epoch 158/500
4/4 [==============================] - 0s 321us/step - loss: 0.4657 - sparse_categorical_accuracy: 0.8667
Epoch 159/500
4/4 [==============================] - 0s 376us/step - loss: 0.4641 - sparse_categorical_accuracy: 0.8750
Epoch 160/500
4/4 [==============================] - 0s 3ms/step - loss: 0.4631 - sparse_categorical_accuracy: 0.8667 - val_loss: 0.5455 - val_sparse_categorical_accuracy: 0.7000
Epoch 161/500
4/4 [==============================] - 0s 347us/step - loss: 0.4645 - sparse_categorical_accuracy: 0.8750
Epoch 162/500
4/4 [==============================] - 0s 393us/step - loss: 0.4638 - sparse_categorical_accuracy: 0.8250
Epoch 163/500
4/4 [==============================] - 0s 326us/step - loss: 0.4631 - sparse_categorical_accuracy: 0.8750
Epoch 164/500
4/4 [==============================] - 0s 329us/step - loss: 0.4691 - sparse_categorical_accuracy: 0.8750
Epoch 165/500
4/4 [==============================] - 0s 332us/step - loss: 0.4609 - sparse_categorical_accuracy: 0.8750
Epoch 166/500
4/4 [==============================] - 0s 367us/step - loss: 0.4631 - sparse_categorical_accuracy: 0.8917
Epoch 167/500
4/4 [==============================] - 0s 369us/step - loss: 0.4601 - sparse_categorical_accuracy: 0.8667
Epoch 168/500
4/4 [==============================] - 0s 378us/step - loss: 0.4599 - sparse_categorical_accuracy: 0.8750
Epoch 169/500
4/4 [==============================] - 0s 317us/step - loss: 0.4586 - sparse_categorical_accuracy: 0.8833
Epoch 170/500
4/4 [==============================] - 0s 314us/step - loss: 0.4585 - sparse_categorical_accuracy: 0.8667
Epoch 171/500
4/4 [==============================] - 0s 301us/step - loss: 0.4618 - sparse_categorical_accuracy: 0.8833
Epoch 172/500
4/4 [==============================] - 0s 341us/step - loss: 0.4594 - sparse_categorical_accuracy: 0.8250
Epoch 173/500
4/4 [==============================] - 0s 372us/step - loss: 0.4571 - sparse_categorical_accuracy: 0.8917
Epoch 174/500
4/4 [==============================] - 0s 353us/step - loss: 0.4576 - sparse_categorical_accuracy: 0.9083
Epoch 175/500
4/4 [==============================] - 0s 367us/step - loss: 0.4584 - sparse_categorical_accuracy: 0.8667
Epoch 176/500
4/4 [==============================] - 0s 316us/step - loss: 0.4592 - sparse_categorical_accuracy: 0.8500
Epoch 177/500
4/4 [==============================] - 0s 335us/step - loss: 0.4564 - sparse_categorical_accuracy: 0.8667
Epoch 178/500
4/4 [==============================] - 0s 372us/step - loss: 0.4578 - sparse_categorical_accuracy: 0.8750
Epoch 179/500
4/4 [==============================] - 0s 378us/step - loss: 0.4552 - sparse_categorical_accuracy: 0.8750
Epoch 180/500
4/4 [==============================] - 0s 3ms/step - loss: 0.4541 - sparse_categorical_accuracy: 0.8833 - val_loss: 0.5253 - val_sparse_categorical_accuracy: 0.8333
Epoch 181/500
4/4 [==============================] - 0s 386us/step - loss: 0.4561 - sparse_categorical_accuracy: 0.8833
Epoch 182/500
4/4 [==============================] - 0s 364us/step - loss: 0.4534 - sparse_categorical_accuracy: 0.8667
Epoch 183/500
4/4 [==============================] - 0s 372us/step - loss: 0.4534 - sparse_categorical_accuracy: 0.8750
Epoch 184/500
4/4 [==============================] - 0s 361us/step - loss: 0.4533 - sparse_categorical_accuracy: 0.9167
Epoch 185/500
4/4 [==============================] - 0s 369us/step - loss: 0.4512 - sparse_categorical_accuracy: 0.8667
Epoch 186/500
4/4 [==============================] - 0s 321us/step - loss: 0.4529 - sparse_categorical_accuracy: 0.8750
Epoch 187/500
4/4 [==============================] - 0s 303us/step - loss: 0.4506 - sparse_categorical_accuracy: 0.8833
Epoch 188/500
4/4 [==============================] - 0s 320us/step - loss: 0.4504 - sparse_categorical_accuracy: 0.8917
Epoch 189/500
4/4 [==============================] - 0s 330us/step - loss: 0.4499 - sparse_categorical_accuracy: 0.8917
Epoch 190/500
4/4 [==============================] - 0s 310us/step - loss: 0.4507 - sparse_categorical_accuracy: 0.8833
Epoch 191/500
4/4 [==============================] - 0s 381us/step - loss: 0.4494 - sparse_categorical_accuracy: 0.8667
Epoch 192/500
4/4 [==============================] - 0s 349us/step - loss: 0.4503 - sparse_categorical_accuracy: 0.8750
Epoch 193/500
4/4 [==============================] - 0s 316us/step - loss: 0.4495 - sparse_categorical_accuracy: 0.9167
Epoch 194/500
4/4 [==============================] - 0s 372us/step - loss: 0.4475 - sparse_categorical_accuracy: 0.9083
Epoch 195/500
4/4 [==============================] - 0s 305us/step - loss: 0.4474 - sparse_categorical_accuracy: 0.8833
Epoch 196/500
4/4 [==============================] - 0s 359us/step - loss: 0.4501 - sparse_categorical_accuracy: 0.9000
Epoch 197/500
4/4 [==============================] - 0s 363us/step - loss: 0.4468 - sparse_categorical_accuracy: 0.8917
Epoch 198/500
4/4 [==============================] - 0s 302us/step - loss: 0.4466 - sparse_categorical_accuracy: 0.8833
Epoch 199/500
4/4 [==============================] - 0s 294us/step - loss: 0.4467 - sparse_categorical_accuracy: 0.9083
Epoch 200/500
4/4 [==============================] - 0s 3ms/step - loss: 0.4449 - sparse_categorical_accuracy: 0.8833 - val_loss: 0.5190 - val_sparse_categorical_accuracy: 0.8333
Epoch 201/500
4/4 [==============================] - 0s 386us/step - loss: 0.4459 - sparse_categorical_accuracy: 0.8667
Epoch 202/500
4/4 [==============================] - 0s 323us/step - loss: 0.4491 - sparse_categorical_accuracy: 0.8750
Epoch 203/500
4/4 [==============================] - 0s 354us/step - loss: 0.4449 - sparse_categorical_accuracy: 0.9000
Epoch 204/500
4/4 [==============================] - 0s 303us/step - loss: 0.4453 - sparse_categorical_accuracy: 0.9000
Epoch 205/500
4/4 [==============================] - 0s 360us/step - loss: 0.4482 - sparse_categorical_accuracy: 0.8833
Epoch 206/500
4/4 [==============================] - 0s 310us/step - loss: 0.4441 - sparse_categorical_accuracy: 0.8750
Epoch 207/500
4/4 [==============================] - 0s 346us/step - loss: 0.4450 - sparse_categorical_accuracy: 0.9167
Epoch 208/500
4/4 [==============================] - 0s 304us/step - loss: 0.4438 - sparse_categorical_accuracy: 0.8750
Epoch 209/500
4/4 [==============================] - 0s 352us/step - loss: 0.4428 - sparse_categorical_accuracy: 0.8917
Epoch 210/500
4/4 [==============================] - 0s 295us/step - loss: 0.4424 - sparse_categorical_accuracy: 0.8917
Epoch 211/500
4/4 [==============================] - 0s 351us/step - loss: 0.4430 - sparse_categorical_accuracy: 0.8917
Epoch 212/500
4/4 [==============================] - 0s 367us/step - loss: 0.4433 - sparse_categorical_accuracy: 0.8583
Epoch 213/500
4/4 [==============================] - 0s 300us/step - loss: 0.4426 - sparse_categorical_accuracy: 0.8833
Epoch 214/500
4/4 [==============================] - 0s 300us/step - loss: 0.4402 - sparse_categorical_accuracy: 0.8917
Epoch 215/500
4/4 [==============================] - 0s 298us/step - loss: 0.4401 - sparse_categorical_accuracy: 0.8833
Epoch 216/500
4/4 [==============================] - 0s 292us/step - loss: 0.4445 - sparse_categorical_accuracy: 0.9000
Epoch 217/500
4/4 [==============================] - 0s 317us/step - loss: 0.4396 - sparse_categorical_accuracy: 0.8667
Epoch 218/500
4/4 [==============================] - 0s 344us/step - loss: 0.4389 - sparse_categorical_accuracy: 0.8667
Epoch 219/500
4/4 [==============================] - 0s 295us/step - loss: 0.4379 - sparse_categorical_accuracy: 0.8917
Epoch 220/500
4/4 [==============================] - 0s 3ms/step - loss: 0.4415 - sparse_categorical_accuracy: 0.8833 - val_loss: 0.4814 - val_sparse_categorical_accuracy: 0.9000
Epoch 221/500
4/4 [==============================] - 0s 318us/step - loss: 0.4394 - sparse_categorical_accuracy: 0.9250
Epoch 222/500
4/4 [==============================] - 0s 359us/step - loss: 0.4393 - sparse_categorical_accuracy: 0.9167
Epoch 223/500
4/4 [==============================] - 0s 354us/step - loss: 0.4377 - sparse_categorical_accuracy: 0.8917
Epoch 224/500
4/4 [==============================] - 0s 341us/step - loss: 0.4384 - sparse_categorical_accuracy: 0.9083
Epoch 225/500
4/4 [==============================] - 0s 303us/step - loss: 0.4379 - sparse_categorical_accuracy: 0.9083
Epoch 226/500
4/4 [==============================] - 0s 372us/step - loss: 0.4371 - sparse_categorical_accuracy: 0.9000
Epoch 227/500
4/4 [==============================] - 0s 293us/step - loss: 0.4369 - sparse_categorical_accuracy: 0.9333
Epoch 228/500
4/4 [==============================] - 0s 291us/step - loss: 0.4369 - sparse_categorical_accuracy: 0.9250
Epoch 229/500
4/4 [==============================] - 0s 293us/step - loss: 0.4359 - sparse_categorical_accuracy: 0.8833
Epoch 230/500
4/4 [==============================] - 0s 285us/step - loss: 0.4374 - sparse_categorical_accuracy: 0.9250
Epoch 231/500
4/4 [==============================] - 0s 299us/step - loss: 0.4362 - sparse_categorical_accuracy: 0.8833
Epoch 232/500
4/4 [==============================] - 0s 297us/step - loss: 0.4380 - sparse_categorical_accuracy: 0.9000
Epoch 233/500
4/4 [==============================] - 0s 300us/step - loss: 0.4343 - sparse_categorical_accuracy: 0.9333
Epoch 234/500
4/4 [==============================] - 0s 295us/step - loss: 0.4350 - sparse_categorical_accuracy: 0.9000
Epoch 235/500
4/4 [==============================] - 0s 294us/step - loss: 0.4337 - sparse_categorical_accuracy: 0.9000
Epoch 236/500
4/4 [==============================] - 0s 341us/step - loss: 0.4348 - sparse_categorical_accuracy: 0.9083
Epoch 237/500
4/4 [==============================] - 0s 354us/step - loss: 0.4326 - sparse_categorical_accuracy: 0.8833
Epoch 238/500
4/4 [==============================] - 0s 346us/step - loss: 0.4327 - sparse_categorical_accuracy: 0.9000
Epoch 239/500
4/4 [==============================] - 0s 347us/step - loss: 0.4323 - sparse_categorical_accuracy: 0.9000
Epoch 240/500
4/4 [==============================] - 0s 3ms/step - loss: 0.4322 - sparse_categorical_accuracy: 0.9250 - val_loss: 0.4969 - val_sparse_categorical_accuracy: 0.8667
Epoch 241/500
4/4 [==============================] - 0s 413us/step - loss: 0.4312 - sparse_categorical_accuracy: 0.8917
Epoch 242/500
4/4 [==============================] - 0s 340us/step - loss: 0.4309 - sparse_categorical_accuracy: 0.9000
Epoch 243/500
4/4 [==============================] - 0s 340us/step - loss: 0.4373 - sparse_categorical_accuracy: 0.9083
Epoch 244/500
4/4 [==============================] - 0s 377us/step - loss: 0.4301 - sparse_categorical_accuracy: 0.9000
Epoch 245/500
4/4 [==============================] - 0s 379us/step - loss: 0.4317 - sparse_categorical_accuracy: 0.9000
Epoch 246/500
4/4 [==============================] - 0s 372us/step - loss: 0.4299 - sparse_categorical_accuracy: 0.9250
Epoch 247/500
4/4 [==============================] - 0s 365us/step - loss: 0.4302 - sparse_categorical_accuracy: 0.9250
Epoch 248/500
4/4 [==============================] - 0s 329us/step - loss: 0.4309 - sparse_categorical_accuracy: 0.9250
Epoch 249/500
4/4 [==============================] - 0s 331us/step - loss: 0.4335 - sparse_categorical_accuracy: 0.9000
Epoch 250/500
4/4 [==============================] - 0s 383us/step - loss: 0.4287 - sparse_categorical_accuracy: 0.8833
Epoch 251/500
4/4 [==============================] - 0s 329us/step - loss: 0.4277 - sparse_categorical_accuracy: 0.8917
Epoch 252/500
4/4 [==============================] - 0s 362us/step - loss: 0.4290 - sparse_categorical_accuracy: 0.9000
Epoch 253/500
4/4 [==============================] - 0s 407us/step - loss: 0.4292 - sparse_categorical_accuracy: 0.9167
Epoch 254/500
4/4 [==============================] - 0s 351us/step - loss: 0.4282 - sparse_categorical_accuracy: 0.9083
Epoch 255/500
4/4 [==============================] - 0s 362us/step - loss: 0.4277 - sparse_categorical_accuracy: 0.9333
Epoch 256/500
4/4 [==============================] - 0s 303us/step - loss: 0.4300 - sparse_categorical_accuracy: 0.9000
Epoch 257/500
4/4 [==============================] - 0s 301us/step - loss: 0.4264 - sparse_categorical_accuracy: 0.9167
Epoch 258/500
4/4 [==============================] - 0s 302us/step - loss: 0.4261 - sparse_categorical_accuracy: 0.9000
Epoch 259/500
4/4 [==============================] - 0s 358us/step - loss: 0.4264 - sparse_categorical_accuracy: 0.9083
Epoch 260/500
4/4 [==============================] - 0s 3ms/step - loss: 0.4262 - sparse_categorical_accuracy: 0.9083 - val_loss: 0.4932 - val_sparse_categorical_accuracy: 0.8667
Epoch 261/500
4/4 [==============================] - 0s 324us/step - loss: 0.4265 - sparse_categorical_accuracy: 0.9000
Epoch 262/500
4/4 [==============================] - 0s 314us/step - loss: 0.4246 - sparse_categorical_accuracy: 0.9000
Epoch 263/500
4/4 [==============================] - 0s 302us/step - loss: 0.4250 - sparse_categorical_accuracy: 0.9000
Epoch 264/500
4/4 [==============================] - 0s 392us/step - loss: 0.4252 - sparse_categorical_accuracy: 0.9083
Epoch 265/500
4/4 [==============================] - 0s 349us/step - loss: 0.4282 - sparse_categorical_accuracy: 0.9250
Epoch 266/500
4/4 [==============================] - 0s 317us/step - loss: 0.4255 - sparse_categorical_accuracy: 0.9333
Epoch 267/500
4/4 [==============================] - 0s 338us/step - loss: 0.4255 - sparse_categorical_accuracy: 0.8917
Epoch 268/500
4/4 [==============================] - 0s 339us/step - loss: 0.4235 - sparse_categorical_accuracy: 0.9000
Epoch 269/500
4/4 [==============================] - 0s 301us/step - loss: 0.4251 - sparse_categorical_accuracy: 0.8750
Epoch 270/500
4/4 [==============================] - 0s 371us/step - loss: 0.4226 - sparse_categorical_accuracy: 0.9250
Epoch 271/500
4/4 [==============================] - 0s 308us/step - loss: 0.4222 - sparse_categorical_accuracy: 0.9333
Epoch 272/500
4/4 [==============================] - 0s 294us/step - loss: 0.4245 - sparse_categorical_accuracy: 0.9083
Epoch 273/500
4/4 [==============================] - 0s 401us/step - loss: 0.4249 - sparse_categorical_accuracy: 0.8917
Epoch 274/500
4/4 [==============================] - 0s 328us/step - loss: 0.4226 - sparse_categorical_accuracy: 0.9333
Epoch 275/500
4/4 [==============================] - 0s 298us/step - loss: 0.4214 - sparse_categorical_accuracy: 0.9083
Epoch 276/500
4/4 [==============================] - 0s 362us/step - loss: 0.4236 - sparse_categorical_accuracy: 0.9083
Epoch 277/500
4/4 [==============================] - 0s 346us/step - loss: 0.4213 - sparse_categorical_accuracy: 0.9417
Epoch 278/500
4/4 [==============================] - 0s 408us/step - loss: 0.4206 - sparse_categorical_accuracy: 0.9250
Epoch 279/500
4/4 [==============================] - 0s 318us/step - loss: 0.4245 - sparse_categorical_accuracy: 0.9250
Epoch 280/500
4/4 [==============================] - 0s 3ms/step - loss: 0.4236 - sparse_categorical_accuracy: 0.9167 - val_loss: 0.4636 - val_sparse_categorical_accuracy: 0.9000
Epoch 281/500
4/4 [==============================] - 0s 447us/step - loss: 0.4216 - sparse_categorical_accuracy: 0.9417
Epoch 282/500
4/4 [==============================] - 0s 338us/step - loss: 0.4195 - sparse_categorical_accuracy: 0.9083
Epoch 283/500
4/4 [==============================] - 0s 380us/step - loss: 0.4192 - sparse_categorical_accuracy: 0.9250
Epoch 284/500
4/4 [==============================] - 0s 300us/step - loss: 0.4218 - sparse_categorical_accuracy: 0.9333
Epoch 285/500
4/4 [==============================] - 0s 327us/step - loss: 0.4214 - sparse_categorical_accuracy: 0.9167
Epoch 286/500
4/4 [==============================] - 0s 331us/step - loss: 0.4199 - sparse_categorical_accuracy: 0.9000
Epoch 287/500
4/4 [==============================] - 0s 367us/step - loss: 0.4232 - sparse_categorical_accuracy: 0.9083
Epoch 288/500
4/4 [==============================] - 0s 311us/step - loss: 0.4199 - sparse_categorical_accuracy: 0.9000
Epoch 289/500
4/4 [==============================] - 0s 385us/step - loss: 0.4234 - sparse_categorical_accuracy: 0.9167
Epoch 290/500
4/4 [==============================] - 0s 288us/step - loss: 0.4195 - sparse_categorical_accuracy: 0.9000
Epoch 291/500
4/4 [==============================] - 0s 313us/step - loss: 0.4175 - sparse_categorical_accuracy: 0.9250
Epoch 292/500
4/4 [==============================] - 0s 391us/step - loss: 0.4183 - sparse_categorical_accuracy: 0.9250
Epoch 293/500
4/4 [==============================] - 0s 341us/step - loss: 0.4182 - sparse_categorical_accuracy: 0.9417
Epoch 294/500
4/4 [==============================] - 0s 347us/step - loss: 0.4171 - sparse_categorical_accuracy: 0.9167
Epoch 295/500
4/4 [==============================] - 0s 306us/step - loss: 0.4208 - sparse_categorical_accuracy: 0.9000
Epoch 296/500
4/4 [==============================] - 0s 337us/step - loss: 0.4162 - sparse_categorical_accuracy: 0.9250
Epoch 297/500
4/4 [==============================] - 0s 315us/step - loss: 0.4162 - sparse_categorical_accuracy: 0.9083
Epoch 298/500
4/4 [==============================] - 0s 339us/step - loss: 0.4162 - sparse_categorical_accuracy: 0.9250
Epoch 299/500
4/4 [==============================] - 0s 311us/step - loss: 0.4153 - sparse_categorical_accuracy: 0.9333
Epoch 300/500
4/4 [==============================] - 0s 3ms/step - loss: 0.4153 - sparse_categorical_accuracy: 0.9333 - val_loss: 0.4698 - val_sparse_categorical_accuracy: 0.8667
Epoch 301/500
4/4 [==============================] - 0s 352us/step - loss: 0.4178 - sparse_categorical_accuracy: 0.9000
Epoch 302/500
4/4 [==============================] - 0s 296us/step - loss: 0.4166 - sparse_categorical_accuracy: 0.9333
Epoch 303/500
4/4 [==============================] - 0s 352us/step - loss: 0.4159 - sparse_categorical_accuracy: 0.9167
Epoch 304/500
4/4 [==============================] - 0s 301us/step - loss: 0.4157 - sparse_categorical_accuracy: 0.9083
Epoch 305/500
4/4 [==============================] - 0s 313us/step - loss: 0.4145 - sparse_categorical_accuracy: 0.9250
Epoch 306/500
4/4 [==============================] - 0s 309us/step - loss: 0.4144 - sparse_categorical_accuracy: 0.9417
Epoch 307/500
4/4 [==============================] - 0s 294us/step - loss: 0.4139 - sparse_categorical_accuracy: 0.9333
Epoch 308/500
4/4 [==============================] - 0s 291us/step - loss: 0.4149 - sparse_categorical_accuracy: 0.9083
Epoch 309/500
4/4 [==============================] - 0s 371us/step - loss: 0.4137 - sparse_categorical_accuracy: 0.9417
Epoch 310/500
4/4 [==============================] - 0s 355us/step - loss: 0.4137 - sparse_categorical_accuracy: 0.9417
Epoch 311/500
4/4 [==============================] - 0s 292us/step - loss: 0.4145 - sparse_categorical_accuracy: 0.9167
Epoch 312/500
4/4 [==============================] - 0s 361us/step - loss: 0.4129 - sparse_categorical_accuracy: 0.9417
Epoch 313/500
4/4 [==============================] - 0s 355us/step - loss: 0.4124 - sparse_categorical_accuracy: 0.9250
Epoch 314/500
4/4 [==============================] - 0s 348us/step - loss: 0.4134 - sparse_categorical_accuracy: 0.9333
Epoch 315/500
4/4 [==============================] - 0s 310us/step - loss: 0.4134 - sparse_categorical_accuracy: 0.9250
Epoch 316/500
4/4 [==============================] - 0s 292us/step - loss: 0.4149 - sparse_categorical_accuracy: 0.9250
Epoch 317/500
4/4 [==============================] - 0s 364us/step - loss: 0.4127 - sparse_categorical_accuracy: 0.9333
Epoch 318/500
4/4 [==============================] - 0s 299us/step - loss: 0.4119 - sparse_categorical_accuracy: 0.9333
Epoch 319/500
4/4 [==============================] - 0s 350us/step - loss: 0.4133 - sparse_categorical_accuracy: 0.9083
Epoch 320/500
4/4 [==============================] - 0s 3ms/step - loss: 0.4119 - sparse_categorical_accuracy: 0.9250 - val_loss: 0.4584 - val_sparse_categorical_accuracy: 0.9000
Epoch 321/500
4/4 [==============================] - 0s 371us/step - loss: 0.4144 - sparse_categorical_accuracy: 0.9083
Epoch 322/500
4/4 [==============================] - 0s 361us/step - loss: 0.4113 - sparse_categorical_accuracy: 0.9417
Epoch 323/500
4/4 [==============================] - 0s 371us/step - loss: 0.4101 - sparse_categorical_accuracy: 0.9333
Epoch 324/500
4/4 [==============================] - 0s 407us/step - loss: 0.4117 - sparse_categorical_accuracy: 0.9167
Epoch 325/500
4/4 [==============================] - 0s 353us/step - loss: 0.4105 - sparse_categorical_accuracy: 0.9417
Epoch 326/500
4/4 [==============================] - 0s 339us/step - loss: 0.4103 - sparse_categorical_accuracy: 0.9417
Epoch 327/500
4/4 [==============================] - 0s 293us/step - loss: 0.4112 - sparse_categorical_accuracy: 0.9000
Epoch 328/500
4/4 [==============================] - 0s 296us/step - loss: 0.4098 - sparse_categorical_accuracy: 0.9333
Epoch 329/500
4/4 [==============================] - 0s 391us/step - loss: 0.4104 - sparse_categorical_accuracy: 0.9417
Epoch 330/500
4/4 [==============================] - 0s 340us/step - loss: 0.4107 - sparse_categorical_accuracy: 0.9333
Epoch 331/500
4/4 [==============================] - 0s 302us/step - loss: 0.4091 - sparse_categorical_accuracy: 0.9250
Epoch 332/500
4/4 [==============================] - 0s 346us/step - loss: 0.4104 - sparse_categorical_accuracy: 0.9417
Epoch 333/500
4/4 [==============================] - 0s 294us/step - loss: 0.4096 - sparse_categorical_accuracy: 0.9333
Epoch 334/500
4/4 [==============================] - 0s 348us/step - loss: 0.4080 - sparse_categorical_accuracy: 0.9417
Epoch 335/500
4/4 [==============================] - 0s 294us/step - loss: 0.4077 - sparse_categorical_accuracy: 0.9250
Epoch 336/500
4/4 [==============================] - 0s 374us/step - loss: 0.4087 - sparse_categorical_accuracy: 0.9417
Epoch 337/500
4/4 [==============================] - 0s 339us/step - loss: 0.4080 - sparse_categorical_accuracy: 0.9333
Epoch 338/500
4/4 [==============================] - 0s 290us/step - loss: 0.4076 - sparse_categorical_accuracy: 0.9417
Epoch 339/500
4/4 [==============================] - 0s 299us/step - loss: 0.4079 - sparse_categorical_accuracy: 0.9417
Epoch 340/500
4/4 [==============================] - 0s 3ms/step - loss: 0.4076 - sparse_categorical_accuracy: 0.9500 - val_loss: 0.4620 - val_sparse_categorical_accuracy: 0.8667
Epoch 341/500
4/4 [==============================] - 0s 317us/step - loss: 0.4094 - sparse_categorical_accuracy: 0.9417
Epoch 342/500
4/4 [==============================] - 0s 354us/step - loss: 0.4089 - sparse_categorical_accuracy: 0.9083
Epoch 343/500
4/4 [==============================] - 0s 296us/step - loss: 0.4071 - sparse_categorical_accuracy: 0.9333
Epoch 344/500
4/4 [==============================] - 0s 291us/step - loss: 0.4068 - sparse_categorical_accuracy: 0.9417
Epoch 345/500
4/4 [==============================] - 0s 358us/step - loss: 0.4060 - sparse_categorical_accuracy: 0.9417
Epoch 346/500
4/4 [==============================] - 0s 341us/step - loss: 0.4062 - sparse_categorical_accuracy: 0.9333
Epoch 347/500
4/4 [==============================] - 0s 356us/step - loss: 0.4069 - sparse_categorical_accuracy: 0.9250
Epoch 348/500
4/4 [==============================] - 0s 355us/step - loss: 0.4079 - sparse_categorical_accuracy: 0.9417
Epoch 349/500
4/4 [==============================] - 0s 337us/step - loss: 0.4057 - sparse_categorical_accuracy: 0.9250
Epoch 350/500
4/4 [==============================] - 0s 303us/step - loss: 0.4051 - sparse_categorical_accuracy: 0.9417
Epoch 351/500
4/4 [==============================] - 0s 348us/step - loss: 0.4054 - sparse_categorical_accuracy: 0.9333
Epoch 352/500
4/4 [==============================] - 0s 335us/step - loss: 0.4065 - sparse_categorical_accuracy: 0.9167
Epoch 353/500
4/4 [==============================] - 0s 346us/step - loss: 0.4052 - sparse_categorical_accuracy: 0.9417
Epoch 354/500
4/4 [==============================] - 0s 297us/step - loss: 0.4054 - sparse_categorical_accuracy: 0.9333
Epoch 355/500
4/4 [==============================] - 0s 364us/step - loss: 0.4050 - sparse_categorical_accuracy: 0.9333
Epoch 356/500
4/4 [==============================] - 0s 402us/step - loss: 0.4054 - sparse_categorical_accuracy: 0.9417
Epoch 357/500
4/4 [==============================] - 0s 359us/step - loss: 0.4048 - sparse_categorical_accuracy: 0.9417
Epoch 358/500
4/4 [==============================] - 0s 364us/step - loss: 0.4046 - sparse_categorical_accuracy: 0.9417
Epoch 359/500
4/4 [==============================] - 0s 389us/step - loss: 0.4051 - sparse_categorical_accuracy: 0.9417
Epoch 360/500
4/4 [==============================] - 0s 3ms/step - loss: 0.4043 - sparse_categorical_accuracy: 0.9083 - val_loss: 0.4490 - val_sparse_categorical_accuracy: 0.9000
Epoch 361/500
4/4 [==============================] - 0s 357us/step - loss: 0.4039 - sparse_categorical_accuracy: 0.9417
Epoch 362/500
4/4 [==============================] - 0s 405us/step - loss: 0.4042 - sparse_categorical_accuracy: 0.9333
Epoch 363/500
4/4 [==============================] - 0s 377us/step - loss: 0.4067 - sparse_categorical_accuracy: 0.9083
Epoch 364/500
4/4 [==============================] - 0s 372us/step - loss: 0.4066 - sparse_categorical_accuracy: 0.9333
Epoch 365/500
4/4 [==============================] - 0s 311us/step - loss: 0.4027 - sparse_categorical_accuracy: 0.9500
Epoch 366/500
4/4 [==============================] - 0s 319us/step - loss: 0.4029 - sparse_categorical_accuracy: 0.9167
Epoch 367/500
4/4 [==============================] - 0s 364us/step - loss: 0.4027 - sparse_categorical_accuracy: 0.9417
Epoch 368/500
4/4 [==============================] - 0s 363us/step - loss: 0.4027 - sparse_categorical_accuracy: 0.9417
Epoch 369/500
4/4 [==============================] - 0s 368us/step - loss: 0.4018 - sparse_categorical_accuracy: 0.9500
Epoch 370/500
4/4 [==============================] - 0s 316us/step - loss: 0.4032 - sparse_categorical_accuracy: 0.9417
Epoch 371/500
4/4 [==============================] - 0s 419us/step - loss: 0.4015 - sparse_categorical_accuracy: 0.9333
Epoch 372/500
4/4 [==============================] - 0s 342us/step - loss: 0.4018 - sparse_categorical_accuracy: 0.9333
Epoch 373/500
4/4 [==============================] - 0s 353us/step - loss: 0.4036 - sparse_categorical_accuracy: 0.9250
Epoch 374/500
4/4 [==============================] - 0s 353us/step - loss: 0.4018 - sparse_categorical_accuracy: 0.9333
Epoch 375/500
4/4 [==============================] - 0s 379us/step - loss: 0.4030 - sparse_categorical_accuracy: 0.9500
Epoch 376/500
4/4 [==============================] - 0s 363us/step - loss: 0.4008 - sparse_categorical_accuracy: 0.9417
Epoch 377/500
4/4 [==============================] - 0s 380us/step - loss: 0.4010 - sparse_categorical_accuracy: 0.9417
Epoch 378/500
4/4 [==============================] - 0s 349us/step - loss: 0.4003 - sparse_categorical_accuracy: 0.9333
Epoch 379/500
4/4 [==============================] - 0s 356us/step - loss: 0.4007 - sparse_categorical_accuracy: 0.9333
Epoch 380/500
4/4 [==============================] - 0s 3ms/step - loss: 0.3998 - sparse_categorical_accuracy: 0.9417 - val_loss: 0.4475 - val_sparse_categorical_accuracy: 0.9000
Epoch 381/500
4/4 [==============================] - 0s 410us/step - loss: 0.4002 - sparse_categorical_accuracy: 0.9417
Epoch 382/500
4/4 [==============================] - 0s 398us/step - loss: 0.4017 - sparse_categorical_accuracy: 0.9417
Epoch 383/500
4/4 [==============================] - 0s 342us/step - loss: 0.4004 - sparse_categorical_accuracy: 0.9417
Epoch 384/500
4/4 [==============================] - 0s 348us/step - loss: 0.4005 - sparse_categorical_accuracy: 0.9333
Epoch 385/500
4/4 [==============================] - 0s 454us/step - loss: 0.4012 - sparse_categorical_accuracy: 0.9500
Epoch 386/500
4/4 [==============================] - 0s 384us/step - loss: 0.4011 - sparse_categorical_accuracy: 0.9500
Epoch 387/500
4/4 [==============================] - 0s 341us/step - loss: 0.4010 - sparse_categorical_accuracy: 0.9250
Epoch 388/500
4/4 [==============================] - 0s 395us/step - loss: 0.4025 - sparse_categorical_accuracy: 0.9333
Epoch 389/500
4/4 [==============================] - 0s 319us/step - loss: 0.4027 - sparse_categorical_accuracy: 0.9250
Epoch 390/500
4/4 [==============================] - 0s 322us/step - loss: 0.4005 - sparse_categorical_accuracy: 0.9500
Epoch 391/500
4/4 [==============================] - 0s 380us/step - loss: 0.3987 - sparse_categorical_accuracy: 0.9500
Epoch 392/500
4/4 [==============================] - 0s 397us/step - loss: 0.3999 - sparse_categorical_accuracy: 0.9333
Epoch 393/500
4/4 [==============================] - 0s 417us/step - loss: 0.3990 - sparse_categorical_accuracy: 0.9417
Epoch 394/500
4/4 [==============================] - 0s 321us/step - loss: 0.3981 - sparse_categorical_accuracy: 0.9417
Epoch 395/500
4/4 [==============================] - 0s 398us/step - loss: 0.3981 - sparse_categorical_accuracy: 0.9500
Epoch 396/500
4/4 [==============================] - 0s 360us/step - loss: 0.3980 - sparse_categorical_accuracy: 0.9417
Epoch 397/500
4/4 [==============================] - 0s 363us/step - loss: 0.4015 - sparse_categorical_accuracy: 0.9583
Epoch 398/500
4/4 [==============================] - 0s 353us/step - loss: 0.3987 - sparse_categorical_accuracy: 0.9333
Epoch 399/500
4/4 [==============================] - 0s 367us/step - loss: 0.3987 - sparse_categorical_accuracy: 0.9333
Epoch 400/500
4/4 [==============================] - 0s 3ms/step - loss: 0.4000 - sparse_categorical_accuracy: 0.9500 - val_loss: 0.4564 - val_sparse_categorical_accuracy: 0.8667
Epoch 401/500
4/4 [==============================] - 0s 358us/step - loss: 0.3989 - sparse_categorical_accuracy: 0.9333
Epoch 402/500
4/4 [==============================] - 0s 315us/step - loss: 0.3975 - sparse_categorical_accuracy: 0.9417
Epoch 403/500
4/4 [==============================] - 0s 341us/step - loss: 0.4000 - sparse_categorical_accuracy: 0.9333
Epoch 404/500
4/4 [==============================] - 0s 393us/step - loss: 0.3996 - sparse_categorical_accuracy: 0.9167
Epoch 405/500
4/4 [==============================] - 0s 374us/step - loss: 0.3970 - sparse_categorical_accuracy: 0.9250
Epoch 406/500
4/4 [==============================] - 0s 332us/step - loss: 0.3967 - sparse_categorical_accuracy: 0.9417
Epoch 407/500
4/4 [==============================] - 0s 415us/step - loss: 0.3960 - sparse_categorical_accuracy: 0.9500
Epoch 408/500
4/4 [==============================] - 0s 371us/step - loss: 0.3960 - sparse_categorical_accuracy: 0.9500
Epoch 409/500
4/4 [==============================] - 0s 310us/step - loss: 0.3962 - sparse_categorical_accuracy: 0.9500
Epoch 410/500
4/4 [==============================] - 0s 306us/step - loss: 0.3956 - sparse_categorical_accuracy: 0.9417
Epoch 411/500
4/4 [==============================] - 0s 304us/step - loss: 0.3995 - sparse_categorical_accuracy: 0.9250
Epoch 412/500
4/4 [==============================] - 0s 301us/step - loss: 0.3978 - sparse_categorical_accuracy: 0.9417
Epoch 413/500
4/4 [==============================] - 0s 295us/step - loss: 0.3954 - sparse_categorical_accuracy: 0.9417
Epoch 414/500
4/4 [==============================] - 0s 380us/step - loss: 0.3948 - sparse_categorical_accuracy: 0.9500
Epoch 415/500
4/4 [==============================] - 0s 311us/step - loss: 0.3958 - sparse_categorical_accuracy: 0.9417
Epoch 416/500
4/4 [==============================] - 0s 299us/step - loss: 0.3946 - sparse_categorical_accuracy: 0.9500
Epoch 417/500
4/4 [==============================] - 0s 296us/step - loss: 0.3944 - sparse_categorical_accuracy: 0.9417
Epoch 418/500
4/4 [==============================] - 0s 296us/step - loss: 0.3963 - sparse_categorical_accuracy: 0.9333
Epoch 419/500
4/4 [==============================] - 0s 338us/step - loss: 0.3960 - sparse_categorical_accuracy: 0.9500
Epoch 420/500
4/4 [==============================] - 0s 3ms/step - loss: 0.3951 - sparse_categorical_accuracy: 0.9333 - val_loss: 0.4377 - val_sparse_categorical_accuracy: 0.9000
Epoch 421/500
4/4 [==============================] - 0s 378us/step - loss: 0.3953 - sparse_categorical_accuracy: 0.9500
Epoch 422/500
4/4 [==============================] - 0s 359us/step - loss: 0.3977 - sparse_categorical_accuracy: 0.9500
Epoch 423/500
4/4 [==============================] - 0s 337us/step - loss: 0.3946 - sparse_categorical_accuracy: 0.9417
Epoch 424/500
4/4 [==============================] - 0s 369us/step - loss: 0.3945 - sparse_categorical_accuracy: 0.9417
Epoch 425/500
4/4 [==============================] - 0s 364us/step - loss: 0.3941 - sparse_categorical_accuracy: 0.9417
Epoch 426/500
4/4 [==============================] - 0s 377us/step - loss: 0.3961 - sparse_categorical_accuracy: 0.9333
Epoch 427/500
4/4 [==============================] - 0s 298us/step - loss: 0.3951 - sparse_categorical_accuracy: 0.9167
Epoch 428/500
4/4 [==============================] - 0s 356us/step - loss: 0.3936 - sparse_categorical_accuracy: 0.9500
Epoch 429/500
4/4 [==============================] - 0s 342us/step - loss: 0.3956 - sparse_categorical_accuracy: 0.9417
Epoch 430/500
4/4 [==============================] - 0s 348us/step - loss: 0.3944 - sparse_categorical_accuracy: 0.9417
Epoch 431/500
4/4 [==============================] - 0s 390us/step - loss: 0.3931 - sparse_categorical_accuracy: 0.9500
Epoch 432/500
4/4 [==============================] - 0s 389us/step - loss: 0.3932 - sparse_categorical_accuracy: 0.9500
Epoch 433/500
4/4 [==============================] - 0s 359us/step - loss: 0.3932 - sparse_categorical_accuracy: 0.9417
Epoch 434/500
4/4 [==============================] - 0s 345us/step - loss: 0.3923 - sparse_categorical_accuracy: 0.9417
Epoch 435/500
4/4 [==============================] - 0s 362us/step - loss: 0.3940 - sparse_categorical_accuracy: 0.9417
Epoch 436/500
4/4 [==============================] - 0s 363us/step - loss: 0.3927 - sparse_categorical_accuracy: 0.9417
Epoch 437/500
4/4 [==============================] - 0s 385us/step - loss: 0.3924 - sparse_categorical_accuracy: 0.9417
Epoch 438/500
4/4 [==============================] - 0s 352us/step - loss: 0.3933 - sparse_categorical_accuracy: 0.9333
Epoch 439/500
4/4 [==============================] - 0s 377us/step - loss: 0.3934 - sparse_categorical_accuracy: 0.9500
Epoch 440/500
4/4 [==============================] - 0s 3ms/step - loss: 0.3914 - sparse_categorical_accuracy: 0.9500 - val_loss: 0.4416 - val_sparse_categorical_accuracy: 0.9000
Epoch 441/500
4/4 [==============================] - 0s 409us/step - loss: 0.3918 - sparse_categorical_accuracy: 0.9417
Epoch 442/500
4/4 [==============================] - 0s 377us/step - loss: 0.3913 - sparse_categorical_accuracy: 0.9500
Epoch 443/500
4/4 [==============================] - 0s 373us/step - loss: 0.3921 - sparse_categorical_accuracy: 0.9583
Epoch 444/500
4/4 [==============================] - 0s 345us/step - loss: 0.3914 - sparse_categorical_accuracy: 0.9417
Epoch 445/500
4/4 [==============================] - 0s 370us/step - loss: 0.3910 - sparse_categorical_accuracy: 0.9500
Epoch 446/500
4/4 [==============================] - 0s 384us/step - loss: 0.3930 - sparse_categorical_accuracy: 0.9417
Epoch 447/500
4/4 [==============================] - 0s 345us/step - loss: 0.3918 - sparse_categorical_accuracy: 0.9417
Epoch 448/500
4/4 [==============================] - 0s 376us/step - loss: 0.3908 - sparse_categorical_accuracy: 0.9417
Epoch 449/500
4/4 [==============================] - 0s 314us/step - loss: 0.3909 - sparse_categorical_accuracy: 0.9417
Epoch 450/500
4/4 [==============================] - 0s 361us/step - loss: 0.3928 - sparse_categorical_accuracy: 0.9333
Epoch 451/500
4/4 [==============================] - 0s 378us/step - loss: 0.3922 - sparse_categorical_accuracy: 0.9500
Epoch 452/500
4/4 [==============================] - 0s 381us/step - loss: 0.3904 - sparse_categorical_accuracy: 0.9417
Epoch 453/500
4/4 [==============================] - 0s 303us/step - loss: 0.3914 - sparse_categorical_accuracy: 0.9417
Epoch 454/500
4/4 [==============================] - 0s 316us/step - loss: 0.3919 - sparse_categorical_accuracy: 0.9417
Epoch 455/500
4/4 [==============================] - 0s 298us/step - loss: 0.3919 - sparse_categorical_accuracy: 0.9500
Epoch 456/500
4/4 [==============================] - 0s 343us/step - loss: 0.3917 - sparse_categorical_accuracy: 0.9417
Epoch 457/500
4/4 [==============================] - 0s 339us/step - loss: 0.3896 - sparse_categorical_accuracy: 0.9583
Epoch 458/500
4/4 [==============================] - 0s 321us/step - loss: 0.3900 - sparse_categorical_accuracy: 0.9500
Epoch 459/500
4/4 [==============================] - 0s 325us/step - loss: 0.3933 - sparse_categorical_accuracy: 0.9417
Epoch 460/500
4/4 [==============================] - 0s 3ms/step - loss: 0.3919 - sparse_categorical_accuracy: 0.9500 - val_loss: 0.4301 - val_sparse_categorical_accuracy: 0.9333
Epoch 461/500
4/4 [==============================] - 0s 346us/step - loss: 0.3902 - sparse_categorical_accuracy: 0.9500
Epoch 462/500
4/4 [==============================] - 0s 319us/step - loss: 0.3895 - sparse_categorical_accuracy: 0.9500
Epoch 463/500
4/4 [==============================] - 0s 420us/step - loss: 0.3905 - sparse_categorical_accuracy: 0.9583
Epoch 464/500
4/4 [==============================] - 0s 386us/step - loss: 0.3900 - sparse_categorical_accuracy: 0.9417
Epoch 465/500
4/4 [==============================] - 0s 314us/step - loss: 0.3912 - sparse_categorical_accuracy: 0.9417
Epoch 466/500
4/4 [==============================] - 0s 311us/step - loss: 0.3902 - sparse_categorical_accuracy: 0.9083
Epoch 467/500
4/4 [==============================] - 0s 369us/step - loss: 0.3890 - sparse_categorical_accuracy: 0.9583
Epoch 468/500
4/4 [==============================] - 0s 419us/step - loss: 0.3895 - sparse_categorical_accuracy: 0.9500
Epoch 469/500
4/4 [==============================] - 0s 365us/step - loss: 0.3895 - sparse_categorical_accuracy: 0.9500
Epoch 470/500
4/4 [==============================] - 0s 378us/step - loss: 0.3889 - sparse_categorical_accuracy: 0.9333
Epoch 471/500
4/4 [==============================] - 0s 405us/step - loss: 0.3887 - sparse_categorical_accuracy: 0.9500
Epoch 472/500
4/4 [==============================] - 0s 336us/step - loss: 0.3931 - sparse_categorical_accuracy: 0.9417
Epoch 473/500
4/4 [==============================] - 0s 397us/step - loss: 0.3898 - sparse_categorical_accuracy: 0.9167
Epoch 474/500
4/4 [==============================] - 0s 403us/step - loss: 0.3883 - sparse_categorical_accuracy: 0.9417
Epoch 475/500
4/4 [==============================] - 0s 398us/step - loss: 0.3877 - sparse_categorical_accuracy: 0.9500
Epoch 476/500
4/4 [==============================] - 0s 400us/step - loss: 0.3898 - sparse_categorical_accuracy: 0.9500
Epoch 477/500
4/4 [==============================] - 0s 352us/step - loss: 0.3903 - sparse_categorical_accuracy: 0.9417
Epoch 478/500
4/4 [==============================] - 0s 405us/step - loss: 0.3874 - sparse_categorical_accuracy: 0.9500
Epoch 479/500
4/4 [==============================] - 0s 354us/step - loss: 0.3895 - sparse_categorical_accuracy: 0.9500
Epoch 480/500
4/4 [==============================] - 0s 3ms/step - loss: 0.3882 - sparse_categorical_accuracy: 0.9417 - val_loss: 0.4204 - val_sparse_categorical_accuracy: 0.9333
Epoch 481/500
4/4 [==============================] - 0s 324us/step - loss: 0.3878 - sparse_categorical_accuracy: 0.9583
Epoch 482/500
4/4 [==============================] - 0s 391us/step - loss: 0.3872 - sparse_categorical_accuracy: 0.9500
Epoch 483/500
4/4 [==============================] - 0s 413us/step - loss: 0.3872 - sparse_categorical_accuracy: 0.9500
Epoch 484/500
4/4 [==============================] - 0s 398us/step - loss: 0.3887 - sparse_categorical_accuracy: 0.9417
Epoch 485/500
4/4 [==============================] - 0s 313us/step - loss: 0.3882 - sparse_categorical_accuracy: 0.9417
Epoch 486/500
4/4 [==============================] - 0s 315us/step - loss: 0.3868 - sparse_categorical_accuracy: 0.9583
Epoch 487/500
4/4 [==============================] - 0s 367us/step - loss: 0.3890 - sparse_categorical_accuracy: 0.9500
Epoch 488/500
4/4 [==============================] - 0s 381us/step - loss: 0.3906 - sparse_categorical_accuracy: 0.9500
Epoch 489/500
4/4 [==============================] - 0s 364us/step - loss: 0.3861 - sparse_categorical_accuracy: 0.9583
Epoch 490/500
4/4 [==============================] - 0s 387us/step - loss: 0.3862 - sparse_categorical_accuracy: 0.9500
Epoch 491/500
4/4 [==============================] - 0s 391us/step - loss: 0.3859 - sparse_categorical_accuracy: 0.9500
Epoch 492/500
4/4 [==============================] - 0s 380us/step - loss: 0.3860 - sparse_categorical_accuracy: 0.9500
Epoch 493/500
4/4 [==============================] - 0s 410us/step - loss: 0.3876 - sparse_categorical_accuracy: 0.9417
Epoch 494/500
4/4 [==============================] - 0s 361us/step - loss: 0.3863 - sparse_categorical_accuracy: 0.9333
Epoch 495/500
4/4 [==============================] - 0s 319us/step - loss: 0.3858 - sparse_categorical_accuracy: 0.9500
Epoch 496/500
4/4 [==============================] - 0s 329us/step - loss: 0.3852 - sparse_categorical_accuracy: 0.9500
Epoch 497/500
4/4 [==============================] - 0s 306us/step - loss: 0.3865 - sparse_categorical_accuracy: 0.9500
Epoch 498/500
4/4 [==============================] - 0s 333us/step - loss: 0.3865 - sparse_categorical_accuracy: 0.9500
Epoch 499/500
4/4 [==============================] - 0s 314us/step - loss: 0.3887 - sparse_categorical_accuracy: 0.9417
Epoch 500/500
4/4 [==============================] - 0s 3ms/step - loss: 0.3887 - sparse_categorical_accuracy: 0.9417 - val_loss: 0.4286 - val_sparse_categorical_accuracy: 0.9333
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense (Dense) (None, 3) 15
=================================================================
Total params: 15
Trainable params: 15
Non-trainable params: 0
_________________________________________________________________
Process finished with exit code 0
搭建神经网络八股Class
import tensorflow as tf
from tensorflow.keras.layers import Dense
from tensorflow.keras import Model
from sklearn import datasets
import numpy as np
x_train = datasets.load_iris().data
y_train = datasets.load_iris().target
np.random.seed(116)
np.random.shuffle(x_train)
np.random.seed(116)
np.random.shuffle(y_train)
tf.random.set_seed(116)
class IrisModel(Model):
def __init__(self):
super(IrisModel, self).__init__()
self.d1 = Dense(3, activation='softmax', kernel_regularizer=tf.keras.regularizers.l2())
def call(self, x):
y = self.d1(x)
return y
model = IrisModel()
model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.1),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
metrics=['sparse_categorical_accuracy'])
model.fit(x_train, y_train, batch_size=32, epochs=500, validation_split=0.2, validation_freq=20)
model.summary()
Epoch 1/500
4/4 [==============================] - 0s 677us/step - loss: 3.1872 - sparse_categorical_accuracy: 0.3333
Epoch 2/500
4/4 [==============================] - 0s 522us/step - loss: 2.4501 - sparse_categorical_accuracy: 0.5833
Epoch 3/500
4/4 [==============================] - 0s 449us/step - loss: 2.0697 - sparse_categorical_accuracy: 0.7000
Epoch 4/500
4/4 [==============================] - 0s 464us/step - loss: 1.7476 - sparse_categorical_accuracy: 0.7000
Epoch 5/500
4/4 [==============================] - 0s 434us/step - loss: 1.4672 - sparse_categorical_accuracy: 0.7000
Epoch 6/500
4/4 [==============================] - 0s 357us/step - loss: 1.2539 - sparse_categorical_accuracy: 0.6917
Epoch 7/500
4/4 [==============================] - 0s 398us/step - loss: 1.1016 - sparse_categorical_accuracy: 0.6167
Epoch 8/500
4/4 [==============================] - 0s 387us/step - loss: 1.0173 - sparse_categorical_accuracy: 0.4583
Epoch 9/500
4/4 [==============================] - 0s 349us/step - loss: 0.9688 - sparse_categorical_accuracy: 0.4417
Epoch 10/500
4/4 [==============================] - 0s 381us/step - loss: 0.9360 - sparse_categorical_accuracy: 0.4000
Epoch 11/500
4/4 [==============================] - 0s 421us/step - loss: 0.9117 - sparse_categorical_accuracy: 0.4167
Epoch 12/500
4/4 [==============================] - 0s 409us/step - loss: 0.8948 - sparse_categorical_accuracy: 0.4083
Epoch 13/500
4/4 [==============================] - 0s 381us/step - loss: 0.8755 - sparse_categorical_accuracy: 0.4417
Epoch 14/500
4/4 [==============================] - 0s 379us/step - loss: 0.8542 - sparse_categorical_accuracy: 0.5000
Epoch 15/500
4/4 [==============================] - 0s 380us/step - loss: 0.8369 - sparse_categorical_accuracy: 0.5167
Epoch 16/500
4/4 [==============================] - 0s 373us/step - loss: 0.8222 - sparse_categorical_accuracy: 0.5333
Epoch 17/500
4/4 [==============================] - 0s 373us/step - loss: 0.8072 - sparse_categorical_accuracy: 0.6000
Epoch 18/500
4/4 [==============================] - 0s 393us/step - loss: 0.7917 - sparse_categorical_accuracy: 0.6167
Epoch 19/500
4/4 [==============================] - 0s 386us/step - loss: 0.7797 - sparse_categorical_accuracy: 0.6583
Epoch 20/500
4/4 [==============================] - 0s 19ms/step - loss: 0.7659 - sparse_categorical_accuracy: 0.6750 - val_loss: 0.8773 - val_sparse_categorical_accuracy: 0.4333
Epoch 21/500
4/4 [==============================] - 0s 470us/step - loss: 0.7552 - sparse_categorical_accuracy: 0.6750
Epoch 22/500
4/4 [==============================] - 0s 402us/step - loss: 0.7444 - sparse_categorical_accuracy: 0.7250
Epoch 23/500
4/4 [==============================] - 0s 393us/step - loss: 0.7309 - sparse_categorical_accuracy: 0.7750
Epoch 24/500
4/4 [==============================] - 0s 406us/step - loss: 0.7225 - sparse_categorical_accuracy: 0.7417
Epoch 25/500
4/4 [==============================] - 0s 324us/step - loss: 0.7135 - sparse_categorical_accuracy: 0.8167
Epoch 26/500
4/4 [==============================] - 0s 377us/step - loss: 0.7085 - sparse_categorical_accuracy: 0.7500
Epoch 27/500
4/4 [==============================] - 0s 396us/step - loss: 0.6940 - sparse_categorical_accuracy: 0.8333
Epoch 28/500
4/4 [==============================] - 0s 324us/step - loss: 0.6856 - sparse_categorical_accuracy: 0.8333
Epoch 29/500
4/4 [==============================] - 0s 388us/step - loss: 0.6768 - sparse_categorical_accuracy: 0.8083
Epoch 30/500
4/4 [==============================] - 0s 403us/step - loss: 0.6723 - sparse_categorical_accuracy: 0.8250
Epoch 31/500
4/4 [==============================] - 0s 331us/step - loss: 0.6650 - sparse_categorical_accuracy: 0.8250
Epoch 32/500
4/4 [==============================] - 0s 351us/step - loss: 0.6569 - sparse_categorical_accuracy: 0.8083
Epoch 33/500
4/4 [==============================] - 0s 400us/step - loss: 0.6493 - sparse_categorical_accuracy: 0.8333
Epoch 34/500
4/4 [==============================] - 0s 332us/step - loss: 0.6451 - sparse_categorical_accuracy: 0.8583
Epoch 35/500
4/4 [==============================] - 0s 332us/step - loss: 0.6384 - sparse_categorical_accuracy: 0.8333
Epoch 36/500
4/4 [==============================] - 0s 376us/step - loss: 0.6318 - sparse_categorical_accuracy: 0.7917
Epoch 37/500
4/4 [==============================] - 0s 386us/step - loss: 0.6287 - sparse_categorical_accuracy: 0.8333
Epoch 38/500
4/4 [==============================] - 0s 388us/step - loss: 0.6222 - sparse_categorical_accuracy: 0.8417
Epoch 39/500
4/4 [==============================] - 0s 327us/step - loss: 0.6180 - sparse_categorical_accuracy: 0.8500
Epoch 40/500
4/4 [==============================] - 0s 3ms/step - loss: 0.6125 - sparse_categorical_accuracy: 0.8500 - val_loss: 0.7019 - val_sparse_categorical_accuracy: 0.6667
Epoch 41/500
4/4 [==============================] - 0s 338us/step - loss: 0.6076 - sparse_categorical_accuracy: 0.8417
Epoch 42/500
4/4 [==============================] - 0s 389us/step - loss: 0.6047 - sparse_categorical_accuracy: 0.8500
Epoch 43/500
4/4 [==============================] - 0s 387us/step - loss: 0.6014 - sparse_categorical_accuracy: 0.8583
Epoch 44/500
4/4 [==============================] - 0s 363us/step - loss: 0.5942 - sparse_categorical_accuracy: 0.8500
Epoch 45/500
4/4 [==============================] - 0s 342us/step - loss: 0.5914 - sparse_categorical_accuracy: 0.8583
Epoch 46/500
4/4 [==============================] - 0s 408us/step - loss: 0.5905 - sparse_categorical_accuracy: 0.8167
Epoch 47/500
4/4 [==============================] - 0s 405us/step - loss: 0.5831 - sparse_categorical_accuracy: 0.8583
Epoch 48/500
4/4 [==============================] - 0s 442us/step - loss: 0.5811 - sparse_categorical_accuracy: 0.8667
Epoch 49/500
4/4 [==============================] - 0s 424us/step - loss: 0.5773 - sparse_categorical_accuracy: 0.8583
Epoch 50/500
4/4 [==============================] - 0s 357us/step - loss: 0.5729 - sparse_categorical_accuracy: 0.8750
Epoch 51/500
4/4 [==============================] - 0s 432us/step - loss: 0.5693 - sparse_categorical_accuracy: 0.8667
Epoch 52/500
4/4 [==============================] - 0s 393us/step - loss: 0.5661 - sparse_categorical_accuracy: 0.8667
Epoch 53/500
4/4 [==============================] - 0s 402us/step - loss: 0.5659 - sparse_categorical_accuracy: 0.8667
Epoch 54/500
4/4 [==============================] - 0s 335us/step - loss: 0.5644 - sparse_categorical_accuracy: 0.8750
Epoch 55/500
4/4 [==============================] - 0s 380us/step - loss: 0.5601 - sparse_categorical_accuracy: 0.8667
Epoch 56/500
4/4 [==============================] - 0s 394us/step - loss: 0.5580 - sparse_categorical_accuracy: 0.8583
Epoch 57/500
4/4 [==============================] - 0s 406us/step - loss: 0.5531 - sparse_categorical_accuracy: 0.8667
Epoch 58/500
4/4 [==============================] - 0s 371us/step - loss: 0.5514 - sparse_categorical_accuracy: 0.8750
Epoch 59/500
4/4 [==============================] - 0s 382us/step - loss: 0.5520 - sparse_categorical_accuracy: 0.8750
Epoch 60/500
4/4 [==============================] - 0s 3ms/step - loss: 0.5451 - sparse_categorical_accuracy: 0.8667 - val_loss: 0.6246 - val_sparse_categorical_accuracy: 0.7000
Epoch 61/500
4/4 [==============================] - 0s 330us/step - loss: 0.5449 - sparse_categorical_accuracy: 0.8750
Epoch 62/500
4/4 [==============================] - 0s 352us/step - loss: 0.5415 - sparse_categorical_accuracy: 0.8750
Epoch 63/500
4/4 [==============================] - 0s 342us/step - loss: 0.5434 - sparse_categorical_accuracy: 0.8750
Epoch 64/500
4/4 [==============================] - 0s 382us/step - loss: 0.5388 - sparse_categorical_accuracy: 0.8250
Epoch 65/500
4/4 [==============================] - 0s 336us/step - loss: 0.5351 - sparse_categorical_accuracy: 0.8750
Epoch 66/500
4/4 [==============================] - 0s 337us/step - loss: 0.5335 - sparse_categorical_accuracy: 0.8583
Epoch 67/500
4/4 [==============================] - 0s 362us/step - loss: 0.5329 - sparse_categorical_accuracy: 0.8583
Epoch 68/500
4/4 [==============================] - 0s 330us/step - loss: 0.5289 - sparse_categorical_accuracy: 0.8750
Epoch 69/500
4/4 [==============================] - 0s 405us/step - loss: 0.5319 - sparse_categorical_accuracy: 0.8750
Epoch 70/500
4/4 [==============================] - 0s 334us/step - loss: 0.5283 - sparse_categorical_accuracy: 0.8500
Epoch 71/500
4/4 [==============================] - 0s 370us/step - loss: 0.5240 - sparse_categorical_accuracy: 0.8750
Epoch 72/500
4/4 [==============================] - 0s 375us/step - loss: 0.5258 - sparse_categorical_accuracy: 0.8750
Epoch 73/500
4/4 [==============================] - 0s 379us/step - loss: 0.5202 - sparse_categorical_accuracy: 0.8750
Epoch 74/500
4/4 [==============================] - 0s 324us/step - loss: 0.5210 - sparse_categorical_accuracy: 0.8667
Epoch 75/500
4/4 [==============================] - 0s 311us/step - loss: 0.5175 - sparse_categorical_accuracy: 0.8583
Epoch 76/500
4/4 [==============================] - 0s 316us/step - loss: 0.5152 - sparse_categorical_accuracy: 0.8750
Epoch 77/500
4/4 [==============================] - 0s 322us/step - loss: 0.5152 - sparse_categorical_accuracy: 0.8750
Epoch 78/500
4/4 [==============================] - 0s 316us/step - loss: 0.5173 - sparse_categorical_accuracy: 0.8750
Epoch 79/500
4/4 [==============================] - 0s 343us/step - loss: 0.5107 - sparse_categorical_accuracy: 0.8750
Epoch 80/500
4/4 [==============================] - 0s 3ms/step - loss: 0.5097 - sparse_categorical_accuracy: 0.8750 - val_loss: 0.5734 - val_sparse_categorical_accuracy: 0.7333
Epoch 81/500
4/4 [==============================] - 0s 328us/step - loss: 0.5121 - sparse_categorical_accuracy: 0.8750
Epoch 82/500
4/4 [==============================] - 0s 311us/step - loss: 0.5078 - sparse_categorical_accuracy: 0.8750
Epoch 83/500
4/4 [==============================] - 0s 310us/step - loss: 0.5057 - sparse_categorical_accuracy: 0.8750
Epoch 84/500
4/4 [==============================] - 0s 346us/step - loss: 0.5040 - sparse_categorical_accuracy: 0.8750
Epoch 85/500
4/4 [==============================] - 0s 383us/step - loss: 0.5047 - sparse_categorical_accuracy: 0.8750
Epoch 86/500
4/4 [==============================] - 0s 368us/step - loss: 0.5034 - sparse_categorical_accuracy: 0.8750
Epoch 87/500
4/4 [==============================] - 0s 362us/step - loss: 0.5010 - sparse_categorical_accuracy: 0.8667
Epoch 88/500
4/4 [==============================] - 0s 310us/step - loss: 0.5023 - sparse_categorical_accuracy: 0.8667
Epoch 89/500
4/4 [==============================] - 0s 364us/step - loss: 0.5005 - sparse_categorical_accuracy: 0.8750
Epoch 90/500
4/4 [==============================] - 0s 414us/step - loss: 0.4987 - sparse_categorical_accuracy: 0.8750
Epoch 91/500
4/4 [==============================] - 0s 310us/step - loss: 0.4963 - sparse_categorical_accuracy: 0.8750
Epoch 92/500
4/4 [==============================] - 0s 303us/step - loss: 0.4947 - sparse_categorical_accuracy: 0.8750
Epoch 93/500
4/4 [==============================] - 0s 303us/step - loss: 0.4939 - sparse_categorical_accuracy: 0.8750
Epoch 94/500
4/4 [==============================] - 0s 339us/step - loss: 0.4958 - sparse_categorical_accuracy: 0.8750
Epoch 95/500
4/4 [==============================] - 0s 353us/step - loss: 0.5002 - sparse_categorical_accuracy: 0.8500
Epoch 96/500
4/4 [==============================] - 0s 296us/step - loss: 0.4937 - sparse_categorical_accuracy: 0.8667
Epoch 97/500
4/4 [==============================] - 0s 305us/step - loss: 0.4897 - sparse_categorical_accuracy: 0.8750
Epoch 98/500
4/4 [==============================] - 0s 302us/step - loss: 0.4902 - sparse_categorical_accuracy: 0.8750
Epoch 99/500
4/4 [==============================] - 0s 346us/step - loss: 0.4889 - sparse_categorical_accuracy: 0.8750
Epoch 100/500
4/4 [==============================] - 0s 3ms/step - loss: 0.4881 - sparse_categorical_accuracy: 0.8667 - val_loss: 0.5383 - val_sparse_categorical_accuracy: 0.8333
Epoch 101/500
4/4 [==============================] - 0s 366us/step - loss: 0.4864 - sparse_categorical_accuracy: 0.8750
Epoch 102/500
4/4 [==============================] - 0s 390us/step - loss: 0.4858 - sparse_categorical_accuracy: 0.8750
Epoch 103/500
4/4 [==============================] - 0s 297us/step - loss: 0.4843 - sparse_categorical_accuracy: 0.8667
Epoch 104/500
4/4 [==============================] - 0s 306us/step - loss: 0.4843 - sparse_categorical_accuracy: 0.8750
Epoch 105/500
4/4 [==============================] - 0s 360us/step - loss: 0.4841 - sparse_categorical_accuracy: 0.8750
Epoch 106/500
4/4 [==============================] - 0s 350us/step - loss: 0.4816 - sparse_categorical_accuracy: 0.8833
Epoch 107/500
4/4 [==============================] - 0s 386us/step - loss: 0.4827 - sparse_categorical_accuracy: 0.8750
Epoch 108/500
4/4 [==============================] - 0s 345us/step - loss: 0.4803 - sparse_categorical_accuracy: 0.8750
Epoch 109/500
4/4 [==============================] - 0s 305us/step - loss: 0.4785 - sparse_categorical_accuracy: 0.8750
Epoch 110/500
4/4 [==============================] - 0s 356us/step - loss: 0.4772 - sparse_categorical_accuracy: 0.8750
Epoch 111/500
4/4 [==============================] - 0s 304us/step - loss: 0.4768 - sparse_categorical_accuracy: 0.8750
Epoch 112/500
4/4 [==============================] - 0s 310us/step - loss: 0.4784 - sparse_categorical_accuracy: 0.8750
Epoch 113/500
4/4 [==============================] - 0s 373us/step - loss: 0.4767 - sparse_categorical_accuracy: 0.8750
Epoch 114/500
4/4 [==============================] - 0s 348us/step - loss: 0.4748 - sparse_categorical_accuracy: 0.9000
Epoch 115/500
4/4 [==============================] - 0s 323us/step - loss: 0.4760 - sparse_categorical_accuracy: 0.8750
Epoch 116/500
4/4 [==============================] - 0s 294us/step - loss: 0.4733 - sparse_categorical_accuracy: 0.8833
Epoch 117/500
4/4 [==============================] - 0s 304us/step - loss: 0.4801 - sparse_categorical_accuracy: 0.8667
Epoch 118/500
4/4 [==============================] - 0s 330us/step - loss: 0.4711 - sparse_categorical_accuracy: 0.8750
Epoch 119/500
4/4 [==============================] - 0s 360us/step - loss: 0.4735 - sparse_categorical_accuracy: 0.8750
Epoch 120/500
4/4 [==============================] - 0s 3ms/step - loss: 0.4705 - sparse_categorical_accuracy: 0.8833 - val_loss: 0.5184 - val_sparse_categorical_accuracy: 0.8333
Epoch 121/500
4/4 [==============================] - 0s 344us/step - loss: 0.4714 - sparse_categorical_accuracy: 0.8750
Epoch 122/500
4/4 [==============================] - 0s 357us/step - loss: 0.4683 - sparse_categorical_accuracy: 0.8750
Epoch 123/500
4/4 [==============================] - 0s 348us/step - loss: 0.4676 - sparse_categorical_accuracy: 0.8750
Epoch 124/500
4/4 [==============================] - 0s 306us/step - loss: 0.4694 - sparse_categorical_accuracy: 0.8750
Epoch 125/500
4/4 [==============================] - 0s 301us/step - loss: 0.4673 - sparse_categorical_accuracy: 0.8750
Epoch 126/500
4/4 [==============================] - 0s 302us/step - loss: 0.4660 - sparse_categorical_accuracy: 0.8750
Epoch 127/500
4/4 [==============================] - 0s 296us/step - loss: 0.4677 - sparse_categorical_accuracy: 0.8750
Epoch 128/500
4/4 [==============================] - 0s 347us/step - loss: 0.4650 - sparse_categorical_accuracy: 0.8750
Epoch 129/500
4/4 [==============================] - 0s 294us/step - loss: 0.4639 - sparse_categorical_accuracy: 0.8750
Epoch 130/500
4/4 [==============================] - 0s 414us/step - loss: 0.4632 - sparse_categorical_accuracy: 0.8750
Epoch 131/500
4/4 [==============================] - 0s 413us/step - loss: 0.4628 - sparse_categorical_accuracy: 0.8833
Epoch 132/500
4/4 [==============================] - 0s 317us/step - loss: 0.4620 - sparse_categorical_accuracy: 0.8750
Epoch 133/500
4/4 [==============================] - 0s 367us/step - loss: 0.4617 - sparse_categorical_accuracy: 0.8750
Epoch 134/500
4/4 [==============================] - 0s 305us/step - loss: 0.4614 - sparse_categorical_accuracy: 0.8750
Epoch 135/500
4/4 [==============================] - 0s 368us/step - loss: 0.4604 - sparse_categorical_accuracy: 0.8750
Epoch 136/500
4/4 [==============================] - 0s 328us/step - loss: 0.4603 - sparse_categorical_accuracy: 0.8750
Epoch 137/500
4/4 [==============================] - 0s 327us/step - loss: 0.4608 - sparse_categorical_accuracy: 0.8750
Epoch 138/500
4/4 [==============================] - 0s 384us/step - loss: 0.4581 - sparse_categorical_accuracy: 0.8750
Epoch 139/500
4/4 [==============================] - 0s 315us/step - loss: 0.4604 - sparse_categorical_accuracy: 0.8750
Epoch 140/500
4/4 [==============================] - 0s 3ms/step - loss: 0.4578 - sparse_categorical_accuracy: 0.8917 - val_loss: 0.5145 - val_sparse_categorical_accuracy: 0.8333
Epoch 141/500
4/4 [==============================] - 0s 358us/step - loss: 0.4568 - sparse_categorical_accuracy: 0.8833
Epoch 142/500
4/4 [==============================] - 0s 352us/step - loss: 0.4562 - sparse_categorical_accuracy: 0.8833
Epoch 143/500
4/4 [==============================] - 0s 369us/step - loss: 0.4578 - sparse_categorical_accuracy: 0.8750
Epoch 144/500
4/4 [==============================] - 0s 319us/step - loss: 0.4564 - sparse_categorical_accuracy: 0.8833
Epoch 145/500
4/4 [==============================] - 0s 397us/step - loss: 0.4577 - sparse_categorical_accuracy: 0.8917
Epoch 146/500
4/4 [==============================] - 0s 385us/step - loss: 0.4539 - sparse_categorical_accuracy: 0.8917
Epoch 147/500
4/4 [==============================] - 0s 376us/step - loss: 0.4569 - sparse_categorical_accuracy: 0.8917
Epoch 148/500
4/4 [==============================] - 0s 361us/step - loss: 0.4539 - sparse_categorical_accuracy: 0.8833
Epoch 149/500
4/4 [==============================] - 0s 376us/step - loss: 0.4561 - sparse_categorical_accuracy: 0.9000
Epoch 150/500
4/4 [==============================] - 0s 380us/step - loss: 0.4524 - sparse_categorical_accuracy: 0.8750
Epoch 151/500
4/4 [==============================] - 0s 335us/step - loss: 0.4515 - sparse_categorical_accuracy: 0.8833
Epoch 152/500
4/4 [==============================] - 0s 317us/step - loss: 0.4519 - sparse_categorical_accuracy: 0.8833
Epoch 153/500
4/4 [==============================] - 0s 372us/step - loss: 0.4507 - sparse_categorical_accuracy: 0.8917
Epoch 154/500
4/4 [==============================] - 0s 467us/step - loss: 0.4531 - sparse_categorical_accuracy: 0.8833
Epoch 155/500
4/4 [==============================] - 0s 337us/step - loss: 0.4522 - sparse_categorical_accuracy: 0.8583
Epoch 156/500
4/4 [==============================] - 0s 349us/step - loss: 0.4520 - sparse_categorical_accuracy: 0.8750
Epoch 157/500
4/4 [==============================] - 0s 335us/step - loss: 0.4526 - sparse_categorical_accuracy: 0.9000
Epoch 158/500
4/4 [==============================] - 0s 368us/step - loss: 0.4487 - sparse_categorical_accuracy: 0.8833
Epoch 159/500
4/4 [==============================] - 0s 304us/step - loss: 0.4479 - sparse_categorical_accuracy: 0.8917
Epoch 160/500
4/4 [==============================] - 0s 3ms/step - loss: 0.4468 - sparse_categorical_accuracy: 0.8833 - val_loss: 0.5055 - val_sparse_categorical_accuracy: 0.8333
Epoch 161/500
4/4 [==============================] - 0s 347us/step - loss: 0.4484 - sparse_categorical_accuracy: 0.8833
Epoch 162/500
4/4 [==============================] - 0s 402us/step - loss: 0.4474 - sparse_categorical_accuracy: 0.8750
Epoch 163/500
4/4 [==============================] - 0s 370us/step - loss: 0.4471 - sparse_categorical_accuracy: 0.8750
Epoch 164/500
4/4 [==============================] - 0s 390us/step - loss: 0.4526 - sparse_categorical_accuracy: 0.9000
Epoch 165/500
4/4 [==============================] - 0s 310us/step - loss: 0.4447 - sparse_categorical_accuracy: 0.8917
Epoch 166/500
4/4 [==============================] - 0s 374us/step - loss: 0.4467 - sparse_categorical_accuracy: 0.8833
Epoch 167/500
4/4 [==============================] - 0s 398us/step - loss: 0.4439 - sparse_categorical_accuracy: 0.8750
Epoch 168/500
4/4 [==============================] - 0s 312us/step - loss: 0.4436 - sparse_categorical_accuracy: 0.8917
Epoch 169/500
4/4 [==============================] - 0s 324us/step - loss: 0.4427 - sparse_categorical_accuracy: 0.9083
Epoch 170/500
4/4 [==============================] - 0s 316us/step - loss: 0.4427 - sparse_categorical_accuracy: 0.8917
Epoch 171/500
4/4 [==============================] - 0s 387us/step - loss: 0.4451 - sparse_categorical_accuracy: 0.8917
Epoch 172/500
4/4 [==============================] - 0s 379us/step - loss: 0.4435 - sparse_categorical_accuracy: 0.8750
Epoch 173/500
4/4 [==============================] - 0s 385us/step - loss: 0.4414 - sparse_categorical_accuracy: 0.9083
Epoch 174/500
4/4 [==============================] - 0s 382us/step - loss: 0.4419 - sparse_categorical_accuracy: 0.9083
Epoch 175/500
4/4 [==============================] - 0s 363us/step - loss: 0.4424 - sparse_categorical_accuracy: 0.8917
Epoch 176/500
4/4 [==============================] - 0s 339us/step - loss: 0.4439 - sparse_categorical_accuracy: 0.8833
Epoch 177/500
4/4 [==============================] - 0s 362us/step - loss: 0.4405 - sparse_categorical_accuracy: 0.8750
Epoch 178/500
4/4 [==============================] - 0s 365us/step - loss: 0.4413 - sparse_categorical_accuracy: 0.8750
Epoch 179/500
4/4 [==============================] - 0s 325us/step - loss: 0.4390 - sparse_categorical_accuracy: 0.8833
Epoch 180/500
4/4 [==============================] - 0s 3ms/step - loss: 0.4388 - sparse_categorical_accuracy: 0.9000 - val_loss: 0.4876 - val_sparse_categorical_accuracy: 0.9000
Epoch 181/500
4/4 [==============================] - 0s 386us/step - loss: 0.4403 - sparse_categorical_accuracy: 0.9083
Epoch 182/500
4/4 [==============================] - 0s 331us/step - loss: 0.4379 - sparse_categorical_accuracy: 0.8750
Epoch 183/500
4/4 [==============================] - 0s 417us/step - loss: 0.4384 - sparse_categorical_accuracy: 0.8750
Epoch 184/500
4/4 [==============================] - 0s 352us/step - loss: 0.4382 - sparse_categorical_accuracy: 0.9000
Epoch 185/500
4/4 [==============================] - 0s 371us/step - loss: 0.4363 - sparse_categorical_accuracy: 0.8833
Epoch 186/500
4/4 [==============================] - 0s 315us/step - loss: 0.4379 - sparse_categorical_accuracy: 0.8833
Epoch 187/500
4/4 [==============================] - 0s 356us/step - loss: 0.4357 - sparse_categorical_accuracy: 0.8917
Epoch 188/500
4/4 [==============================] - 0s 400us/step - loss: 0.4355 - sparse_categorical_accuracy: 0.8917
Epoch 189/500
4/4 [==============================] - 0s 319us/step - loss: 0.4350 - sparse_categorical_accuracy: 0.8917
Epoch 190/500
4/4 [==============================] - 0s 358us/step - loss: 0.4362 - sparse_categorical_accuracy: 0.8833
Epoch 191/500
4/4 [==============================] - 0s 354us/step - loss: 0.4347 - sparse_categorical_accuracy: 0.8833
Epoch 192/500
4/4 [==============================] - 0s 358us/step - loss: 0.4356 - sparse_categorical_accuracy: 0.8750
Epoch 193/500
4/4 [==============================] - 0s 381us/step - loss: 0.4346 - sparse_categorical_accuracy: 0.9167
Epoch 194/500
4/4 [==============================] - 0s 304us/step - loss: 0.4329 - sparse_categorical_accuracy: 0.9000
Epoch 195/500
4/4 [==============================] - 0s 306us/step - loss: 0.4330 - sparse_categorical_accuracy: 0.8917
Epoch 196/500
4/4 [==============================] - 0s 292us/step - loss: 0.4349 - sparse_categorical_accuracy: 0.9083
Epoch 197/500
4/4 [==============================] - 0s 358us/step - loss: 0.4323 - sparse_categorical_accuracy: 0.9083
Epoch 198/500
4/4 [==============================] - 0s 327us/step - loss: 0.4319 - sparse_categorical_accuracy: 0.8917
Epoch 199/500
4/4 [==============================] - 0s 380us/step - loss: 0.4322 - sparse_categorical_accuracy: 0.9083
Epoch 200/500
4/4 [==============================] - 0s 3ms/step - loss: 0.4306 - sparse_categorical_accuracy: 0.9000 - val_loss: 0.4820 - val_sparse_categorical_accuracy: 0.9000
Epoch 201/500
4/4 [==============================] - 0s 331us/step - loss: 0.4316 - sparse_categorical_accuracy: 0.8833
Epoch 202/500
4/4 [==============================] - 0s 329us/step - loss: 0.4350 - sparse_categorical_accuracy: 0.8833
Epoch 203/500
4/4 [==============================] - 0s 301us/step - loss: 0.4308 - sparse_categorical_accuracy: 0.9167
Epoch 204/500
4/4 [==============================] - 0s 394us/step - loss: 0.4308 - sparse_categorical_accuracy: 0.9000
Epoch 205/500
4/4 [==============================] - 0s 366us/step - loss: 0.4340 - sparse_categorical_accuracy: 0.9000
Epoch 206/500
4/4 [==============================] - 0s 295us/step - loss: 0.4301 - sparse_categorical_accuracy: 0.8917
Epoch 207/500
4/4 [==============================] - 0s 354us/step - loss: 0.4308 - sparse_categorical_accuracy: 0.9000
Epoch 208/500
4/4 [==============================] - 0s 346us/step - loss: 0.4296 - sparse_categorical_accuracy: 0.8833
Epoch 209/500
4/4 [==============================] - 0s 313us/step - loss: 0.4291 - sparse_categorical_accuracy: 0.8917
Epoch 210/500
4/4 [==============================] - 0s 314us/step - loss: 0.4289 - sparse_categorical_accuracy: 0.9000
Epoch 211/500
4/4 [==============================] - 0s 299us/step - loss: 0.4293 - sparse_categorical_accuracy: 0.9083
Epoch 212/500
4/4 [==============================] - 0s 351us/step - loss: 0.4298 - sparse_categorical_accuracy: 0.8833
Epoch 213/500
4/4 [==============================] - 0s 293us/step - loss: 0.4289 - sparse_categorical_accuracy: 0.8917
Epoch 214/500
4/4 [==============================] - 0s 347us/step - loss: 0.4270 - sparse_categorical_accuracy: 0.9083
Epoch 215/500
4/4 [==============================] - 0s 417us/step - loss: 0.4266 - sparse_categorical_accuracy: 0.9000
Epoch 216/500
4/4 [==============================] - 0s 343us/step - loss: 0.4301 - sparse_categorical_accuracy: 0.9250
Epoch 217/500
4/4 [==============================] - 0s 359us/step - loss: 0.4259 - sparse_categorical_accuracy: 0.9000
Epoch 218/500
4/4 [==============================] - 0s 343us/step - loss: 0.4254 - sparse_categorical_accuracy: 0.8917
Epoch 219/500
4/4 [==============================] - 0s 367us/step - loss: 0.4246 - sparse_categorical_accuracy: 0.9083
Epoch 220/500
4/4 [==============================] - 0s 3ms/step - loss: 0.4282 - sparse_categorical_accuracy: 0.9000 - val_loss: 0.4526 - val_sparse_categorical_accuracy: 0.9333
Epoch 221/500
4/4 [==============================] - 0s 344us/step - loss: 0.4260 - sparse_categorical_accuracy: 0.9333
Epoch 222/500
4/4 [==============================] - 0s 364us/step - loss: 0.4264 - sparse_categorical_accuracy: 0.9250
Epoch 223/500
4/4 [==============================] - 0s 360us/step - loss: 0.4243 - sparse_categorical_accuracy: 0.9000
Epoch 224/500
4/4 [==============================] - 0s 298us/step - loss: 0.4250 - sparse_categorical_accuracy: 0.9083
Epoch 225/500
4/4 [==============================] - 0s 359us/step - loss: 0.4259 - sparse_categorical_accuracy: 0.9000
Epoch 226/500
4/4 [==============================] - 0s 365us/step - loss: 0.4242 - sparse_categorical_accuracy: 0.9083
Epoch 227/500
4/4 [==============================] - 0s 304us/step - loss: 0.4237 - sparse_categorical_accuracy: 0.9167
Epoch 228/500
4/4 [==============================] - 0s 369us/step - loss: 0.4234 - sparse_categorical_accuracy: 0.9333
Epoch 229/500
4/4 [==============================] - 0s 299us/step - loss: 0.4231 - sparse_categorical_accuracy: 0.9000
Epoch 230/500
4/4 [==============================] - 0s 300us/step - loss: 0.4242 - sparse_categorical_accuracy: 0.9167
Epoch 231/500
4/4 [==============================] - 0s 352us/step - loss: 0.4233 - sparse_categorical_accuracy: 0.9083
Epoch 232/500
4/4 [==============================] - 0s 402us/step - loss: 0.4250 - sparse_categorical_accuracy: 0.9083
Epoch 233/500
4/4 [==============================] - 0s 363us/step - loss: 0.4217 - sparse_categorical_accuracy: 0.9333
Epoch 234/500
4/4 [==============================] - 0s 358us/step - loss: 0.4222 - sparse_categorical_accuracy: 0.9083
Epoch 235/500
4/4 [==============================] - 0s 360us/step - loss: 0.4212 - sparse_categorical_accuracy: 0.9083
Epoch 236/500
4/4 [==============================] - 0s 340us/step - loss: 0.4223 - sparse_categorical_accuracy: 0.9167
Epoch 237/500
4/4 [==============================] - 0s 350us/step - loss: 0.4199 - sparse_categorical_accuracy: 0.9000
Epoch 238/500
4/4 [==============================] - 0s 337us/step - loss: 0.4208 - sparse_categorical_accuracy: 0.8917
Epoch 239/500
4/4 [==============================] - 0s 289us/step - loss: 0.4198 - sparse_categorical_accuracy: 0.9083
Epoch 240/500
4/4 [==============================] - 0s 3ms/step - loss: 0.4202 - sparse_categorical_accuracy: 0.9167 - val_loss: 0.4655 - val_sparse_categorical_accuracy: 0.9000
Epoch 241/500
4/4 [==============================] - 0s 396us/step - loss: 0.4190 - sparse_categorical_accuracy: 0.9000
Epoch 242/500
4/4 [==============================] - 0s 341us/step - loss: 0.4189 - sparse_categorical_accuracy: 0.9083
Epoch 243/500
4/4 [==============================] - 0s 400us/step - loss: 0.4254 - sparse_categorical_accuracy: 0.8917
Epoch 244/500
4/4 [==============================] - 0s 385us/step - loss: 0.4182 - sparse_categorical_accuracy: 0.9083
Epoch 245/500
4/4 [==============================] - 0s 332us/step - loss: 0.4194 - sparse_categorical_accuracy: 0.9000
Epoch 246/500
4/4 [==============================] - 0s 354us/step - loss: 0.4178 - sparse_categorical_accuracy: 0.9167
Epoch 247/500
4/4 [==============================] - 0s 374us/step - loss: 0.4186 - sparse_categorical_accuracy: 0.9167
Epoch 248/500
4/4 [==============================] - 0s 329us/step - loss: 0.4189 - sparse_categorical_accuracy: 0.9250
Epoch 249/500
4/4 [==============================] - 0s 376us/step - loss: 0.4219 - sparse_categorical_accuracy: 0.9250
Epoch 250/500
4/4 [==============================] - 0s 320us/step - loss: 0.4172 - sparse_categorical_accuracy: 0.9000
Epoch 251/500
4/4 [==============================] - 0s 362us/step - loss: 0.4160 - sparse_categorical_accuracy: 0.9083
Epoch 252/500
4/4 [==============================] - 0s 300us/step - loss: 0.4170 - sparse_categorical_accuracy: 0.9000
Epoch 253/500
4/4 [==============================] - 0s 379us/step - loss: 0.4173 - sparse_categorical_accuracy: 0.9250
Epoch 254/500
4/4 [==============================] - 0s 322us/step - loss: 0.4165 - sparse_categorical_accuracy: 0.9083
Epoch 255/500
4/4 [==============================] - 0s 350us/step - loss: 0.4160 - sparse_categorical_accuracy: 0.9250
Epoch 256/500
4/4 [==============================] - 0s 347us/step - loss: 0.4180 - sparse_categorical_accuracy: 0.9083
Epoch 257/500
4/4 [==============================] - 0s 383us/step - loss: 0.4153 - sparse_categorical_accuracy: 0.9083
Epoch 258/500
4/4 [==============================] - 0s 309us/step - loss: 0.4147 - sparse_categorical_accuracy: 0.9083
Epoch 259/500
4/4 [==============================] - 0s 356us/step - loss: 0.4148 - sparse_categorical_accuracy: 0.9083
Epoch 260/500
4/4 [==============================] - 0s 3ms/step - loss: 0.4150 - sparse_categorical_accuracy: 0.9083 - val_loss: 0.4637 - val_sparse_categorical_accuracy: 0.9000
Epoch 261/500
4/4 [==============================] - 0s 375us/step - loss: 0.4153 - sparse_categorical_accuracy: 0.9083
Epoch 262/500
4/4 [==============================] - 0s 362us/step - loss: 0.4135 - sparse_categorical_accuracy: 0.9083
Epoch 263/500
4/4 [==============================] - 0s 355us/step - loss: 0.4138 - sparse_categorical_accuracy: 0.9000
Epoch 264/500
4/4 [==============================] - 0s 398us/step - loss: 0.4143 - sparse_categorical_accuracy: 0.9000
Epoch 265/500
4/4 [==============================] - 0s 386us/step - loss: 0.4172 - sparse_categorical_accuracy: 0.9333
Epoch 266/500
4/4 [==============================] - 0s 316us/step - loss: 0.4144 - sparse_categorical_accuracy: 0.9333
Epoch 267/500
4/4 [==============================] - 0s 362us/step - loss: 0.4140 - sparse_categorical_accuracy: 0.9083
Epoch 268/500
4/4 [==============================] - 0s 359us/step - loss: 0.4127 - sparse_categorical_accuracy: 0.9000
Epoch 269/500
4/4 [==============================] - 0s 383us/step - loss: 0.4139 - sparse_categorical_accuracy: 0.9083
Epoch 270/500
4/4 [==============================] - 0s 375us/step - loss: 0.4118 - sparse_categorical_accuracy: 0.9083
Epoch 271/500
4/4 [==============================] - 0s 361us/step - loss: 0.4116 - sparse_categorical_accuracy: 0.9250
Epoch 272/500
4/4 [==============================] - 0s 327us/step - loss: 0.4129 - sparse_categorical_accuracy: 0.9083
Epoch 273/500
4/4 [==============================] - 0s 358us/step - loss: 0.4138 - sparse_categorical_accuracy: 0.9000
Epoch 274/500
4/4 [==============================] - 0s 382us/step - loss: 0.4119 - sparse_categorical_accuracy: 0.9250
Epoch 275/500
4/4 [==============================] - 0s 335us/step - loss: 0.4108 - sparse_categorical_accuracy: 0.9000
Epoch 276/500
4/4 [==============================] - 0s 360us/step - loss: 0.4131 - sparse_categorical_accuracy: 0.9083
Epoch 277/500
4/4 [==============================] - 0s 364us/step - loss: 0.4107 - sparse_categorical_accuracy: 0.9417
Epoch 278/500
4/4 [==============================] - 0s 305us/step - loss: 0.4102 - sparse_categorical_accuracy: 0.9083
Epoch 279/500
4/4 [==============================] - 0s 349us/step - loss: 0.4142 - sparse_categorical_accuracy: 0.9083
Epoch 280/500
4/4 [==============================] - 0s 3ms/step - loss: 0.4126 - sparse_categorical_accuracy: 0.9083 - val_loss: 0.4392 - val_sparse_categorical_accuracy: 0.9333
Epoch 281/500
4/4 [==============================] - 0s 321us/step - loss: 0.4105 - sparse_categorical_accuracy: 0.9417
Epoch 282/500
4/4 [==============================] - 0s 329us/step - loss: 0.4092 - sparse_categorical_accuracy: 0.9083
Epoch 283/500
4/4 [==============================] - 0s 371us/step - loss: 0.4090 - sparse_categorical_accuracy: 0.9250
Epoch 284/500
4/4 [==============================] - 0s 397us/step - loss: 0.4120 - sparse_categorical_accuracy: 0.9250
Epoch 285/500
4/4 [==============================] - 0s 350us/step - loss: 0.4112 - sparse_categorical_accuracy: 0.9083
Epoch 286/500
4/4 [==============================] - 0s 357us/step - loss: 0.4098 - sparse_categorical_accuracy: 0.9000
Epoch 287/500
4/4 [==============================] - 0s 308us/step - loss: 0.4131 - sparse_categorical_accuracy: 0.9000
Epoch 288/500
4/4 [==============================] - 0s 329us/step - loss: 0.4098 - sparse_categorical_accuracy: 0.9083
Epoch 289/500
4/4 [==============================] - 0s 349us/step - loss: 0.4131 - sparse_categorical_accuracy: 0.9250
Epoch 290/500
4/4 [==============================] - 0s 323us/step - loss: 0.4090 - sparse_categorical_accuracy: 0.9083
Epoch 291/500
4/4 [==============================] - 0s 359us/step - loss: 0.4076 - sparse_categorical_accuracy: 0.9083
Epoch 292/500
4/4 [==============================] - 0s 384us/step - loss: 0.4084 - sparse_categorical_accuracy: 0.9083
Epoch 293/500
4/4 [==============================] - 0s 390us/step - loss: 0.4087 - sparse_categorical_accuracy: 0.9500
Epoch 294/500
4/4 [==============================] - 0s 365us/step - loss: 0.4077 - sparse_categorical_accuracy: 0.9000
Epoch 295/500
4/4 [==============================] - 0s 358us/step - loss: 0.4108 - sparse_categorical_accuracy: 0.9083
Epoch 296/500
4/4 [==============================] - 0s 390us/step - loss: 0.4066 - sparse_categorical_accuracy: 0.9083
Epoch 297/500
4/4 [==============================] - 0s 378us/step - loss: 0.4067 - sparse_categorical_accuracy: 0.9083
Epoch 298/500
4/4 [==============================] - 0s 351us/step - loss: 0.4065 - sparse_categorical_accuracy: 0.9167
Epoch 299/500
4/4 [==============================] - 0s 365us/step - loss: 0.4057 - sparse_categorical_accuracy: 0.9083
Epoch 300/500
4/4 [==============================] - 0s 3ms/step - loss: 0.4059 - sparse_categorical_accuracy: 0.9083 - val_loss: 0.4450 - val_sparse_categorical_accuracy: 0.9333
Epoch 301/500
4/4 [==============================] - 0s 372us/step - loss: 0.4076 - sparse_categorical_accuracy: 0.9167
Epoch 302/500
4/4 [==============================] - 0s 305us/step - loss: 0.4075 - sparse_categorical_accuracy: 0.9333
Epoch 303/500
4/4 [==============================] - 0s 313us/step - loss: 0.4061 - sparse_categorical_accuracy: 0.9083
Epoch 304/500
4/4 [==============================] - 0s 350us/step - loss: 0.4064 - sparse_categorical_accuracy: 0.9000
Epoch 305/500
4/4 [==============================] - 0s 288us/step - loss: 0.4050 - sparse_categorical_accuracy: 0.9167
Epoch 306/500
4/4 [==============================] - 0s 307us/step - loss: 0.4049 - sparse_categorical_accuracy: 0.9333
Epoch 307/500
4/4 [==============================] - 0s 322us/step - loss: 0.4045 - sparse_categorical_accuracy: 0.9083
Epoch 308/500
4/4 [==============================] - 0s 370us/step - loss: 0.4058 - sparse_categorical_accuracy: 0.9083
Epoch 309/500
4/4 [==============================] - 0s 298us/step - loss: 0.4047 - sparse_categorical_accuracy: 0.9500
Epoch 310/500
4/4 [==============================] - 0s 294us/step - loss: 0.4044 - sparse_categorical_accuracy: 0.9250
Epoch 311/500
4/4 [==============================] - 0s 359us/step - loss: 0.4051 - sparse_categorical_accuracy: 0.9083
Epoch 312/500
4/4 [==============================] - 0s 323us/step - loss: 0.4038 - sparse_categorical_accuracy: 0.9333
Epoch 313/500
4/4 [==============================] - 0s 402us/step - loss: 0.4033 - sparse_categorical_accuracy: 0.9083
Epoch 314/500
4/4 [==============================] - 0s 428us/step - loss: 0.4045 - sparse_categorical_accuracy: 0.9167
Epoch 315/500
4/4 [==============================] - 0s 311us/step - loss: 0.4042 - sparse_categorical_accuracy: 0.9083
Epoch 316/500
4/4 [==============================] - 0s 360us/step - loss: 0.4060 - sparse_categorical_accuracy: 0.9167
Epoch 317/500
4/4 [==============================] - 0s 373us/step - loss: 0.4039 - sparse_categorical_accuracy: 0.9167
Epoch 318/500
4/4 [==============================] - 0s 292us/step - loss: 0.4032 - sparse_categorical_accuracy: 0.9167
Epoch 319/500
4/4 [==============================] - 0s 309us/step - loss: 0.4045 - sparse_categorical_accuracy: 0.9083
Epoch 320/500
4/4 [==============================] - 0s 3ms/step - loss: 0.4032 - sparse_categorical_accuracy: 0.9083 - val_loss: 0.4345 - val_sparse_categorical_accuracy: 0.9333
Epoch 321/500
4/4 [==============================] - 0s 331us/step - loss: 0.4053 - sparse_categorical_accuracy: 0.9167
Epoch 322/500
4/4 [==============================] - 0s 357us/step - loss: 0.4028 - sparse_categorical_accuracy: 0.9583
Epoch 323/500
4/4 [==============================] - 0s 372us/step - loss: 0.4014 - sparse_categorical_accuracy: 0.9167
Epoch 324/500
4/4 [==============================] - 0s 375us/step - loss: 0.4031 - sparse_categorical_accuracy: 0.9083
Epoch 325/500
4/4 [==============================] - 0s 369us/step - loss: 0.4023 - sparse_categorical_accuracy: 0.9333
Epoch 326/500
4/4 [==============================] - 0s 302us/step - loss: 0.4020 - sparse_categorical_accuracy: 0.9333
Epoch 327/500
4/4 [==============================] - 0s 369us/step - loss: 0.4027 - sparse_categorical_accuracy: 0.9083
Epoch 328/500
4/4 [==============================] - 0s 331us/step - loss: 0.4012 - sparse_categorical_accuracy: 0.9167
Epoch 329/500
4/4 [==============================] - 0s 357us/step - loss: 0.4022 - sparse_categorical_accuracy: 0.9500
Epoch 330/500
4/4 [==============================] - 0s 320us/step - loss: 0.4019 - sparse_categorical_accuracy: 0.9167
Epoch 331/500
4/4 [==============================] - 0s 354us/step - loss: 0.4007 - sparse_categorical_accuracy: 0.9083
Epoch 332/500
4/4 [==============================] - 0s 364us/step - loss: 0.4022 - sparse_categorical_accuracy: 0.9583
Epoch 333/500
4/4 [==============================] - 0s 358us/step - loss: 0.4015 - sparse_categorical_accuracy: 0.9083
Epoch 334/500
4/4 [==============================] - 0s 363us/step - loss: 0.3998 - sparse_categorical_accuracy: 0.9333
Epoch 335/500
4/4 [==============================] - 0s 300us/step - loss: 0.3995 - sparse_categorical_accuracy: 0.9083
Epoch 336/500
4/4 [==============================] - 0s 344us/step - loss: 0.4005 - sparse_categorical_accuracy: 0.9250
Epoch 337/500
4/4 [==============================] - 0s 290us/step - loss: 0.3999 - sparse_categorical_accuracy: 0.9083
Epoch 338/500
4/4 [==============================] - 0s 345us/step - loss: 0.3996 - sparse_categorical_accuracy: 0.9333
Epoch 339/500
4/4 [==============================] - 0s 318us/step - loss: 0.3995 - sparse_categorical_accuracy: 0.9167
Epoch 340/500
4/4 [==============================] - 0s 3ms/step - loss: 0.3996 - sparse_categorical_accuracy: 0.9500 - val_loss: 0.4382 - val_sparse_categorical_accuracy: 0.9333
Epoch 341/500
4/4 [==============================] - 0s 316us/step - loss: 0.4012 - sparse_categorical_accuracy: 0.9167
Epoch 342/500
4/4 [==============================] - 0s 302us/step - loss: 0.4008 - sparse_categorical_accuracy: 0.9167
Epoch 343/500
4/4 [==============================] - 0s 302us/step - loss: 0.3992 - sparse_categorical_accuracy: 0.9167
Epoch 344/500
4/4 [==============================] - 0s 292us/step - loss: 0.3989 - sparse_categorical_accuracy: 0.9500
Epoch 345/500
4/4 [==============================] - 0s 300us/step - loss: 0.3980 - sparse_categorical_accuracy: 0.9167
Epoch 346/500
4/4 [==============================] - 0s 307us/step - loss: 0.3982 - sparse_categorical_accuracy: 0.9083
Epoch 347/500
4/4 [==============================] - 0s 368us/step - loss: 0.3989 - sparse_categorical_accuracy: 0.9083
Epoch 348/500
4/4 [==============================] - 0s 302us/step - loss: 0.3996 - sparse_categorical_accuracy: 0.9583
Epoch 349/500
4/4 [==============================] - 0s 294us/step - loss: 0.3978 - sparse_categorical_accuracy: 0.9083
Epoch 350/500
4/4 [==============================] - 0s 332us/step - loss: 0.3973 - sparse_categorical_accuracy: 0.9500
Epoch 351/500
4/4 [==============================] - 0s 299us/step - loss: 0.3977 - sparse_categorical_accuracy: 0.9083
Epoch 352/500
4/4 [==============================] - 0s 352us/step - loss: 0.3985 - sparse_categorical_accuracy: 0.9083
Epoch 353/500
4/4 [==============================] - 0s 289us/step - loss: 0.3973 - sparse_categorical_accuracy: 0.9250
Epoch 354/500
4/4 [==============================] - 0s 359us/step - loss: 0.3978 - sparse_categorical_accuracy: 0.9083
Epoch 355/500
4/4 [==============================] - 0s 351us/step - loss: 0.3974 - sparse_categorical_accuracy: 0.9167
Epoch 356/500
4/4 [==============================] - 0s 354us/step - loss: 0.3978 - sparse_categorical_accuracy: 0.9417
Epoch 357/500
4/4 [==============================] - 0s 384us/step - loss: 0.3970 - sparse_categorical_accuracy: 0.9167
Epoch 358/500
4/4 [==============================] - 0s 366us/step - loss: 0.3970 - sparse_categorical_accuracy: 0.9417
Epoch 359/500
4/4 [==============================] - 0s 377us/step - loss: 0.3976 - sparse_categorical_accuracy: 0.9333
Epoch 360/500
4/4 [==============================] - 0s 3ms/step - loss: 0.3968 - sparse_categorical_accuracy: 0.9083 - val_loss: 0.4275 - val_sparse_categorical_accuracy: 0.9333
Epoch 361/500
4/4 [==============================] - 0s 397us/step - loss: 0.3963 - sparse_categorical_accuracy: 0.9417
Epoch 362/500
4/4 [==============================] - 0s 399us/step - loss: 0.3966 - sparse_categorical_accuracy: 0.9500
Epoch 363/500
4/4 [==============================] - 0s 330us/step - loss: 0.3992 - sparse_categorical_accuracy: 0.9083
Epoch 364/500
4/4 [==============================] - 0s 402us/step - loss: 0.3985 - sparse_categorical_accuracy: 0.9250
Epoch 365/500
4/4 [==============================] - 0s 366us/step - loss: 0.3954 - sparse_categorical_accuracy: 0.9417
Epoch 366/500
4/4 [==============================] - 0s 367us/step - loss: 0.3956 - sparse_categorical_accuracy: 0.9083
Epoch 367/500
4/4 [==============================] - 0s 383us/step - loss: 0.3954 - sparse_categorical_accuracy: 0.9333
Epoch 368/500
4/4 [==============================] - 0s 378us/step - loss: 0.3954 - sparse_categorical_accuracy: 0.9250
Epoch 369/500
4/4 [==============================] - 0s 406us/step - loss: 0.3945 - sparse_categorical_accuracy: 0.9500
Epoch 370/500
4/4 [==============================] - 0s 338us/step - loss: 0.3957 - sparse_categorical_accuracy: 0.9583
Epoch 371/500
4/4 [==============================] - 0s 315us/step - loss: 0.3943 - sparse_categorical_accuracy: 0.9083
Epoch 372/500
4/4 [==============================] - 0s 365us/step - loss: 0.3946 - sparse_categorical_accuracy: 0.9083
Epoch 373/500
4/4 [==============================] - 0s 355us/step - loss: 0.3964 - sparse_categorical_accuracy: 0.9250
Epoch 374/500
4/4 [==============================] - 0s 344us/step - loss: 0.3949 - sparse_categorical_accuracy: 0.9250
Epoch 375/500
4/4 [==============================] - 0s 307us/step - loss: 0.3960 - sparse_categorical_accuracy: 0.9417
Epoch 376/500
4/4 [==============================] - 0s 354us/step - loss: 0.3938 - sparse_categorical_accuracy: 0.9250
Epoch 377/500
4/4 [==============================] - 0s 364us/step - loss: 0.3941 - sparse_categorical_accuracy: 0.9583
Epoch 378/500
4/4 [==============================] - 0s 365us/step - loss: 0.3934 - sparse_categorical_accuracy: 0.9083
Epoch 379/500
4/4 [==============================] - 0s 354us/step - loss: 0.3939 - sparse_categorical_accuracy: 0.9167
Epoch 380/500
4/4 [==============================] - 0s 3ms/step - loss: 0.3930 - sparse_categorical_accuracy: 0.9417 - val_loss: 0.4266 - val_sparse_categorical_accuracy: 0.9333
Epoch 381/500
4/4 [==============================] - 0s 396us/step - loss: 0.3931 - sparse_categorical_accuracy: 0.9417
Epoch 382/500
4/4 [==============================] - 0s 331us/step - loss: 0.3947 - sparse_categorical_accuracy: 0.9417
Epoch 383/500
4/4 [==============================] - 0s 327us/step - loss: 0.3936 - sparse_categorical_accuracy: 0.9333
Epoch 384/500
4/4 [==============================] - 0s 336us/step - loss: 0.3937 - sparse_categorical_accuracy: 0.9083
Epoch 385/500
4/4 [==============================] - 0s 303us/step - loss: 0.3941 - sparse_categorical_accuracy: 0.9500
Epoch 386/500
4/4 [==============================] - 0s 306us/step - loss: 0.3941 - sparse_categorical_accuracy: 0.9583
Epoch 387/500
4/4 [==============================] - 0s 393us/step - loss: 0.3940 - sparse_categorical_accuracy: 0.9250
Epoch 388/500
4/4 [==============================] - 0s 363us/step - loss: 0.3953 - sparse_categorical_accuracy: 0.9583
Epoch 389/500
4/4 [==============================] - 0s 319us/step - loss: 0.3958 - sparse_categorical_accuracy: 0.9167
Epoch 390/500
4/4 [==============================] - 0s 365us/step - loss: 0.3937 - sparse_categorical_accuracy: 0.9500
Epoch 391/500
4/4 [==============================] - 0s 360us/step - loss: 0.3920 - sparse_categorical_accuracy: 0.9500
Epoch 392/500
4/4 [==============================] - 0s 412us/step - loss: 0.3932 - sparse_categorical_accuracy: 0.9167
Epoch 393/500
4/4 [==============================] - 0s 386us/step - loss: 0.3924 - sparse_categorical_accuracy: 0.9583
Epoch 394/500
4/4 [==============================] - 0s 319us/step - loss: 0.3916 - sparse_categorical_accuracy: 0.9167
Epoch 395/500
4/4 [==============================] - 0s 378us/step - loss: 0.3916 - sparse_categorical_accuracy: 0.9417
Epoch 396/500
4/4 [==============================] - 0s 307us/step - loss: 0.3915 - sparse_categorical_accuracy: 0.9417
Epoch 397/500
4/4 [==============================] - 0s 333us/step - loss: 0.3949 - sparse_categorical_accuracy: 0.9583
Epoch 398/500
4/4 [==============================] - 0s 325us/step - loss: 0.3920 - sparse_categorical_accuracy: 0.9167
Epoch 399/500
4/4 [==============================] - 0s 356us/step - loss: 0.3926 - sparse_categorical_accuracy: 0.9167
Epoch 400/500
4/4 [==============================] - 0s 3ms/step - loss: 0.3934 - sparse_categorical_accuracy: 0.9333 - val_loss: 0.4343 - val_sparse_categorical_accuracy: 0.9333
Epoch 401/500
4/4 [==============================] - 0s 396us/step - loss: 0.3922 - sparse_categorical_accuracy: 0.9083
Epoch 402/500
4/4 [==============================] - 0s 366us/step - loss: 0.3914 - sparse_categorical_accuracy: 0.9333
Epoch 403/500
4/4 [==============================] - 0s 333us/step - loss: 0.3936 - sparse_categorical_accuracy: 0.9333
Epoch 404/500
4/4 [==============================] - 0s 301us/step - loss: 0.3936 - sparse_categorical_accuracy: 0.9083
Epoch 405/500
4/4 [==============================] - 0s 376us/step - loss: 0.3909 - sparse_categorical_accuracy: 0.9083
Epoch 406/500
4/4 [==============================] - 0s 365us/step - loss: 0.3906 - sparse_categorical_accuracy: 0.9333
Epoch 407/500
4/4 [==============================] - 0s 312us/step - loss: 0.3898 - sparse_categorical_accuracy: 0.9583
Epoch 408/500
4/4 [==============================] - 0s 349us/step - loss: 0.3898 - sparse_categorical_accuracy: 0.9583
Epoch 409/500
4/4 [==============================] - 0s 313us/step - loss: 0.3903 - sparse_categorical_accuracy: 0.9417
Epoch 410/500
4/4 [==============================] - 0s 389us/step - loss: 0.3894 - sparse_categorical_accuracy: 0.9167
Epoch 411/500
4/4 [==============================] - 0s 355us/step - loss: 0.3931 - sparse_categorical_accuracy: 0.9167
Epoch 412/500
4/4 [==============================] - 0s 370us/step - loss: 0.3914 - sparse_categorical_accuracy: 0.9333
Epoch 413/500
4/4 [==============================] - 0s 298us/step - loss: 0.3894 - sparse_categorical_accuracy: 0.9417
Epoch 414/500
4/4 [==============================] - 0s 303us/step - loss: 0.3889 - sparse_categorical_accuracy: 0.9500
Epoch 415/500
4/4 [==============================] - 0s 348us/step - loss: 0.3897 - sparse_categorical_accuracy: 0.9250
Epoch 416/500
4/4 [==============================] - 0s 294us/step - loss: 0.3887 - sparse_categorical_accuracy: 0.9500
Epoch 417/500
4/4 [==============================] - 0s 298us/step - loss: 0.3886 - sparse_categorical_accuracy: 0.9333
Epoch 418/500
4/4 [==============================] - 0s 364us/step - loss: 0.3902 - sparse_categorical_accuracy: 0.9333
Epoch 419/500
4/4 [==============================] - 0s 325us/step - loss: 0.3897 - sparse_categorical_accuracy: 0.9500
Epoch 420/500
4/4 [==============================] - 0s 3ms/step - loss: 0.3892 - sparse_categorical_accuracy: 0.9250 - val_loss: 0.4190 - val_sparse_categorical_accuracy: 0.9333
Epoch 421/500
4/4 [==============================] - 0s 337us/step - loss: 0.3893 - sparse_categorical_accuracy: 0.9500
Epoch 422/500
4/4 [==============================] - 0s 363us/step - loss: 0.3919 - sparse_categorical_accuracy: 0.9583
Epoch 423/500
4/4 [==============================] - 0s 328us/step - loss: 0.3887 - sparse_categorical_accuracy: 0.9167
Epoch 424/500
4/4 [==============================] - 0s 370us/step - loss: 0.3886 - sparse_categorical_accuracy: 0.9333
Epoch 425/500
4/4 [==============================] - 0s 297us/step - loss: 0.3886 - sparse_categorical_accuracy: 0.9250
Epoch 426/500
4/4 [==============================] - 0s 326us/step - loss: 0.3906 - sparse_categorical_accuracy: 0.9333
Epoch 427/500
4/4 [==============================] - 0s 320us/step - loss: 0.3894 - sparse_categorical_accuracy: 0.9167
Epoch 428/500
4/4 [==============================] - 0s 312us/step - loss: 0.3878 - sparse_categorical_accuracy: 0.9583
Epoch 429/500
4/4 [==============================] - 0s 352us/step - loss: 0.3899 - sparse_categorical_accuracy: 0.9417
Epoch 430/500
4/4 [==============================] - 0s 346us/step - loss: 0.3886 - sparse_categorical_accuracy: 0.9167
Epoch 431/500
4/4 [==============================] - 0s 357us/step - loss: 0.3875 - sparse_categorical_accuracy: 0.9583
Epoch 432/500
4/4 [==============================] - 0s 304us/step - loss: 0.3874 - sparse_categorical_accuracy: 0.9500
Epoch 433/500
4/4 [==============================] - 0s 301us/step - loss: 0.3876 - sparse_categorical_accuracy: 0.9417
Epoch 434/500
4/4 [==============================] - 0s 351us/step - loss: 0.3868 - sparse_categorical_accuracy: 0.9250
Epoch 435/500
4/4 [==============================] - 0s 305us/step - loss: 0.3885 - sparse_categorical_accuracy: 0.9333
Epoch 436/500
4/4 [==============================] - 0s 348us/step - loss: 0.3873 - sparse_categorical_accuracy: 0.9417
Epoch 437/500
4/4 [==============================] - 0s 348us/step - loss: 0.3870 - sparse_categorical_accuracy: 0.9333
Epoch 438/500
4/4 [==============================] - 0s 294us/step - loss: 0.3874 - sparse_categorical_accuracy: 0.9083
Epoch 439/500
4/4 [==============================] - 0s 298us/step - loss: 0.3880 - sparse_categorical_accuracy: 0.9500
Epoch 440/500
4/4 [==============================] - 0s 3ms/step - loss: 0.3859 - sparse_categorical_accuracy: 0.9500 - val_loss: 0.4228 - val_sparse_categorical_accuracy: 0.9333
Epoch 441/500
4/4 [==============================] - 0s 352us/step - loss: 0.3862 - sparse_categorical_accuracy: 0.9500
Epoch 442/500
4/4 [==============================] - 0s 302us/step - loss: 0.3859 - sparse_categorical_accuracy: 0.9500
Epoch 443/500
4/4 [==============================] - 0s 365us/step - loss: 0.3866 - sparse_categorical_accuracy: 0.9500
Epoch 444/500
4/4 [==============================] - 0s 346us/step - loss: 0.3861 - sparse_categorical_accuracy: 0.9417
Epoch 445/500
4/4 [==============================] - 0s 309us/step - loss: 0.3856 - sparse_categorical_accuracy: 0.9583
Epoch 446/500
4/4 [==============================] - 0s 306us/step - loss: 0.3879 - sparse_categorical_accuracy: 0.9500
Epoch 447/500
4/4 [==============================] - 0s 354us/step - loss: 0.3866 - sparse_categorical_accuracy: 0.9417
Epoch 448/500
4/4 [==============================] - 0s 289us/step - loss: 0.3856 - sparse_categorical_accuracy: 0.9500
Epoch 449/500
4/4 [==============================] - 0s 354us/step - loss: 0.3857 - sparse_categorical_accuracy: 0.9250
Epoch 450/500
4/4 [==============================] - 0s 355us/step - loss: 0.3880 - sparse_categorical_accuracy: 0.9083
Epoch 451/500
4/4 [==============================] - 0s 348us/step - loss: 0.3869 - sparse_categorical_accuracy: 0.9500
Epoch 452/500
4/4 [==============================] - 0s 298us/step - loss: 0.3852 - sparse_categorical_accuracy: 0.9333
Epoch 453/500
4/4 [==============================] - 0s 366us/step - loss: 0.3862 - sparse_categorical_accuracy: 0.9417
Epoch 454/500
4/4 [==============================] - 0s 350us/step - loss: 0.3870 - sparse_categorical_accuracy: 0.9250
Epoch 455/500
4/4 [==============================] - 0s 299us/step - loss: 0.3863 - sparse_categorical_accuracy: 0.9500
Epoch 456/500
4/4 [==============================] - 0s 353us/step - loss: 0.3866 - sparse_categorical_accuracy: 0.9333
Epoch 457/500
4/4 [==============================] - 0s 286us/step - loss: 0.3847 - sparse_categorical_accuracy: 0.9583
Epoch 458/500
4/4 [==============================] - 0s 356us/step - loss: 0.3851 - sparse_categorical_accuracy: 0.9500
Epoch 459/500
4/4 [==============================] - 0s 303us/step - loss: 0.3878 - sparse_categorical_accuracy: 0.9250
Epoch 460/500
4/4 [==============================] - 0s 3ms/step - loss: 0.3869 - sparse_categorical_accuracy: 0.9667 - val_loss: 0.4141 - val_sparse_categorical_accuracy: 0.9333
Epoch 461/500
4/4 [==============================] - 0s 375us/step - loss: 0.3852 - sparse_categorical_accuracy: 0.9583
Epoch 462/500
4/4 [==============================] - 0s 405us/step - loss: 0.3846 - sparse_categorical_accuracy: 0.9417
Epoch 463/500
4/4 [==============================] - 0s 422us/step - loss: 0.3856 - sparse_categorical_accuracy: 0.9583
Epoch 464/500
4/4 [==============================] - 0s 376us/step - loss: 0.3850 - sparse_categorical_accuracy: 0.9500
Epoch 465/500
4/4 [==============================] - 0s 309us/step - loss: 0.3864 - sparse_categorical_accuracy: 0.9250
Epoch 466/500
4/4 [==============================] - 0s 325us/step - loss: 0.3853 - sparse_categorical_accuracy: 0.9083
Epoch 467/500
4/4 [==============================] - 0s 310us/step - loss: 0.3841 - sparse_categorical_accuracy: 0.9667
Epoch 468/500
4/4 [==============================] - 0s 373us/step - loss: 0.3845 - sparse_categorical_accuracy: 0.9583
Epoch 469/500
4/4 [==============================] - 0s 325us/step - loss: 0.3842 - sparse_categorical_accuracy: 0.9417
Epoch 470/500
4/4 [==============================] - 0s 310us/step - loss: 0.3839 - sparse_categorical_accuracy: 0.9250
Epoch 471/500
4/4 [==============================] - 0s 359us/step - loss: 0.3841 - sparse_categorical_accuracy: 0.9500
Epoch 472/500
4/4 [==============================] - 0s 363us/step - loss: 0.3881 - sparse_categorical_accuracy: 0.9500
Epoch 473/500
4/4 [==============================] - 0s 336us/step - loss: 0.3851 - sparse_categorical_accuracy: 0.9083
Epoch 474/500
4/4 [==============================] - 0s 381us/step - loss: 0.3836 - sparse_categorical_accuracy: 0.9500
Epoch 475/500
4/4 [==============================] - 0s 365us/step - loss: 0.3830 - sparse_categorical_accuracy: 0.9583
Epoch 476/500
4/4 [==============================] - 0s 365us/step - loss: 0.3846 - sparse_categorical_accuracy: 0.9417
Epoch 477/500
4/4 [==============================] - 0s 393us/step - loss: 0.3853 - sparse_categorical_accuracy: 0.9500
Epoch 478/500
4/4 [==============================] - 0s 356us/step - loss: 0.3827 - sparse_categorical_accuracy: 0.9583
Epoch 479/500
4/4 [==============================] - 0s 376us/step - loss: 0.3845 - sparse_categorical_accuracy: 0.9583
Epoch 480/500
4/4 [==============================] - 0s 3ms/step - loss: 0.3836 - sparse_categorical_accuracy: 0.9417 - val_loss: 0.4053 - val_sparse_categorical_accuracy: 1.0000
Epoch 481/500
4/4 [==============================] - 0s 397us/step - loss: 0.3830 - sparse_categorical_accuracy: 0.9583
Epoch 482/500
4/4 [==============================] - 0s 416us/step - loss: 0.3825 - sparse_categorical_accuracy: 0.9583
Epoch 483/500
4/4 [==============================] - 0s 347us/step - loss: 0.3825 - sparse_categorical_accuracy: 0.9583
Epoch 484/500
4/4 [==============================] - 0s 355us/step - loss: 0.3842 - sparse_categorical_accuracy: 0.9417
Epoch 485/500
4/4 [==============================] - 0s 440us/step - loss: 0.3835 - sparse_categorical_accuracy: 0.9500
Epoch 486/500
4/4 [==============================] - 0s 309us/step - loss: 0.3822 - sparse_categorical_accuracy: 0.9667
Epoch 487/500
4/4 [==============================] - 0s 319us/step - loss: 0.3839 - sparse_categorical_accuracy: 0.9417
Epoch 488/500
4/4 [==============================] - 0s 318us/step - loss: 0.3858 - sparse_categorical_accuracy: 0.9333
Epoch 489/500
4/4 [==============================] - 0s 342us/step - loss: 0.3816 - sparse_categorical_accuracy: 0.9583
Epoch 490/500
4/4 [==============================] - 0s 365us/step - loss: 0.3817 - sparse_categorical_accuracy: 0.9583
Epoch 491/500
4/4 [==============================] - 0s 318us/step - loss: 0.3814 - sparse_categorical_accuracy: 0.9583
Epoch 492/500
4/4 [==============================] - 0s 381us/step - loss: 0.3815 - sparse_categorical_accuracy: 0.9583
Epoch 493/500
4/4 [==============================] - 0s 335us/step - loss: 0.3833 - sparse_categorical_accuracy: 0.9333
Epoch 494/500
4/4 [==============================] - 0s 318us/step - loss: 0.3820 - sparse_categorical_accuracy: 0.9333
Epoch 495/500
4/4 [==============================] - 0s 324us/step - loss: 0.3814 - sparse_categorical_accuracy: 0.9500
Epoch 496/500
4/4 [==============================] - 0s 305us/step - loss: 0.3809 - sparse_categorical_accuracy: 0.9583
Epoch 497/500
4/4 [==============================] - 0s 303us/step - loss: 0.3819 - sparse_categorical_accuracy: 0.9583
Epoch 498/500
4/4 [==============================] - 0s 369us/step - loss: 0.3821 - sparse_categorical_accuracy: 0.9583
Epoch 499/500
4/4 [==============================] - 0s 304us/step - loss: 0.3841 - sparse_categorical_accuracy: 0.9333
Epoch 500/500
4/4 [==============================] - 0s 3ms/step - loss: 0.3842 - sparse_categorical_accuracy: 0.9417 - val_loss: 0.4126 - val_sparse_categorical_accuracy: 0.9333
Model: "iris_model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense (Dense) multiple 15
=================================================================
Total params: 15
Trainable params: 15
Non-trainable params: 0
_________________________________________________________________
Process finished with exit code 0