李宏毅8月深度学习类神经网络训练不起来怎么办Task05打卡

本文主要讨论深度学习中遇到的问题,如如何区分local minima和saddle point,以及优化方法如Batch和Momentum。介绍了Batch Normalization的重要性,以及在训练过程中如何调整学习率。同时,对分类任务中的损失函数和训练难点进行了分析。
摘要由CSDN通过智能技术生成

一、如何辨认梯度为0是处于local minima还是saddle point?

(如果卡在saddle point仍有路走)
1、用泰勒级数表示Loss函数形状
在这里插入图片描述

  • 当处于critical point,一阶导数为0,即g为0,通过第一项和第三项判断是局部最大值、局部最小值还是鞍部
    2、通过第三项的正负判断
    在这里插入图片描述
    3、如果是卡在saddle point
    在这里插入图片描述
  • 当特征值小于0,沿着此刻特征向量的方向更新

二、Batch和Momentum

2.1Batch

1、batch字面上是批量的意思,全部的batch构成一个epoch,在算完一个epoch后打乱重新构成新的batch组合,再接着做梯度下降更新参数
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值