SPOJ-BALNUM Balanced Numbers

数位DP+状态压缩
balance number 定义为数位中每种偶数出现奇数次,奇数出现偶数次(注意是每个数分开算)
0~9每个数可以有三种状态:没出现过,出现过奇数次,出现过偶数次
可以用十位三进制数完全表示,数组为d[len][num],len为长度,num为状态
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<vector>
using namespace std;
typedef long long ll;
const int N=20;
const int p[]={1,3,9,27,81,243,729,2187,6561,19683,59049};
ll d[N][60000];
int dis[N];
int is_balance(int num) //判断
{
	int t=0;
	while(num)
	{
		if(t%2==1&&num%3==1) return 0;
		if(t%2==0&&num%3==2) return 0;
		num/=3;
		t++;
	}
	return 1;
}
ll dp(int len,int num,bool f,bool flag)
{
	if(len==-1) return is_balance(num);
	if(!flag&&d[len][num]!=-1) return d[len][num];
	ll ans=0;
	int end=flag?dis[len]:9;
	for(int i=0;i<=end;i++)
	{
		bool f0=f&&(i==0); //前导0标志
		int num0;
		if(f0&&i==0)
		{
			num0=num;
		}
		else
		{
			int t=num/p[i]%3;
			if(t==0||t==1) num0=num+p[i];
			if(t==2) num0=num-p[i];
		}
		ans+=dp(len-1,num0,f0,flag&&(i==end));
	}
	if(!flag) d[len][num]=ans;
	return ans;
}
ll solve(ll n)
{
	int t=0;
	while(n)
	{
		dis[t++]=n%10;
		n/=10;
	}
	return dp(t-1,0,true,true);
}
int main()
{
	int T;
	scanf("%d",&T);
	memset(d,-1,sizeof(d));
	ll a,b;
	while(T--)
	{
		scanf("%lld%lld",&a,&b);
		printf("%lld\n",solve(b)-solve(a-1));
	}
	return 0;
}

阅读更多
上一篇HDU-4734 F(x)
下一篇HDU-4507 吉哥系列故事——恨7不成妻
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭