先用矩阵快速幂计算出F(n)含有a的个数和b的个数,再用快速幂算出答案
WA后才发现A^B%C并不等于A^(B%C)%C
费马小定理:C为质数且A,C互质,A^B%C=A^(B%(C-1))%C
那么求幂次时MOD-1就可以了
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
const ll MOD=1e9+7;
const int N=2;
struct node
{
ll a[10][10];
};
node shu,ans,mp;
//shu是输入的矩阵,ans是所求答案
node matrix(node x,node y)
{
for(int i=1;i<=N;i++)
for(int j=1;j<=N;j++){
mp.a[i][j]=0;
for(int p=1;p<=N;p++)
mp.a[i][j]=(mp.a[i][j]+x.a[i][p]*y.a[p][j]+MOD-1)%(MOD-1);
//矩阵乘法
}
return mp;
}
void work(ll k)
{//矩阵快速幂
for(int i=1;i<=N;i++)
for(int j=1;j<=N;j++)
ans.a[i][j]=0;
for(int i=1;i<=N;i++) ans.a[i][i]=1;
node t=shu;
while(k){
if(k&1)
ans=matrix(ans,t);
k>>=1;
t=matrix(t,t);
}
}
ll expow(ll a,ll k)
{
ll ret=1;
while(k)
{
if(k&1)
ret=ret*a%MOD;
a=a*a%MOD;
k>>=1;
}
return ret;
}
int main()
{
ll n,a,b;
while(~scanf("%lld%lld%lld",&a,&b,&n))
{
if(n==0)
{
printf("%lld\n",a);
continue;
}
if(n==1)
{
printf("%lld\n",b);
continue;
}
ll ret;
memset(shu.a,0,sizeof(shu.a));
shu.a[1][1]=shu.a[1][2]=1;
shu.a[2][1]=1;
work(n-1);
ret=(expow(b,ans.a[1][1])*expow(a,ans.a[1][2]))%MOD;
printf("%lld\n",ret);
}
return 0;
}