HDU-4185 Oil Skimming

首先一个2*1的矩形可以覆盖两点,这两点一定相邻

如果要把这个矩阵染成黑白两色,可以把相邻两点染成不同颜色,像是国际象棋棋盘那样

可以发现,一个矩形一定覆盖一个黑色和一个白色,可以看作是相邻两点之间的边

这样就转化成了二分图最大匹配问题,黑色点和白色点为二分图的两部分,相邻点之间建边,求最大匹配

我用了HK算法求最大匹配,匈牙利算法估计会超时

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
using namespace std;
typedef long long ll;
const int N=600*600+10;
const int M=600*600*2+10;
const int INF=0x7f7f7f7f;
const int DX[]={0,0,-1,1};
const int DY[]={-1,1,0,0};
struct Edge
{
    int to,nxt;
}edge[M];
int tot,first[N];
void addedge(int u,int v)
{
    edge[tot].to=v;
    edge[tot].nxt=first[u];
    first[u]=tot++;
}
void init()
{
    tot=0;
    memset(first,-1,sizeof(first));
}

int uN;
int Mx[N],My[N];
int dx[N],dy[N];
int dis;
bool used[N];
bool SearchP()
{
    queue<int> q;
    memset(dx,-1,sizeof(dx));
    memset(dy,-1,sizeof(dy));
    for(int i=1;i<=uN;i++)
        if(Mx[i]==-1)
        {
            q.push(i);
            dx[i]=0;
        }
    dis=INF;
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        if(dx[u]>dis) break;
        for(int i=first[u];i!=-1;i=edge[i].nxt)
        {
            int v=edge[i].to;
            if(dy[v]==-1)
            {
                dy[v]=dx[u]+1;
                if(My[v]==-1) dis=dy[v];
                else
                {
                    dx[My[v]]=dy[v]+1;
                    q.push(My[v]);
                }
            }
        }
    }
    return dis!=INF;
}
bool dfs(int u)
{
    for(int i=first[u];i!=-1;i=edge[i].nxt)
    {
        int v=edge[i].to;
        if(!used[v]&&dy[v]==dx[u]+1)
        {
            used[v]=true;
            if(My[v]!=-1&&dy[v]==dis) continue;
            if(My[v]==-1||dfs(My[v]))
            {
                My[v]=u;
                Mx[u]=v;
                return true;
            }
        }
    }
    return false;
}
int MaxMatch()
{
    int res=0;
    memset(Mx,-1,sizeof(Mx));
    memset(My,-1,sizeof(My));
    while(SearchP())
    {
        memset(used,false,sizeof(used));
        for(int i=1;i<=uN;i++)
            if(Mx[i]==-1&&dfs(i)) res++;
    }
    return res;
}
char g[610][610];
int id[610][610];
int main()
{
    int n,T,kase=0;
    scanf("%d",&T);
    while(T--)
    {
        init();
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
            scanf("%s",g[i]+1);
        memset(id,-1,sizeof(id));
        int cnt=1;
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                if(g[i][j]=='#'&&(i+j)%2==0)
                    id[i][j]=cnt++;
        uN=cnt-1;
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                if(g[i][j]=='#'&&(i+j)%2==1)
                {
                    int t=cnt++;
                    for(int k=0;k<4;k++)
                    {
                        int ni=i+DX[k];
                        int nj=j+DY[k];
                        if(id[ni][nj]!=-1) addedge(id[ni][nj],t);
                    }
                }
        printf("Case %d: %d\n",++kase,MaxMatch());
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值