首先一个2*1的矩形可以覆盖两点,这两点一定相邻
如果要把这个矩阵染成黑白两色,可以把相邻两点染成不同颜色,像是国际象棋棋盘那样
可以发现,一个矩形一定覆盖一个黑色和一个白色,可以看作是相邻两点之间的边
这样就转化成了二分图最大匹配问题,黑色点和白色点为二分图的两部分,相邻点之间建边,求最大匹配
我用了HK算法求最大匹配,匈牙利算法估计会超时
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
using namespace std;
typedef long long ll;
const int N=600*600+10;
const int M=600*600*2+10;
const int INF=0x7f7f7f7f;
const int DX[]={0,0,-1,1};
const int DY[]={-1,1,0,0};
struct Edge
{
int to,nxt;
}edge[M];
int tot,first[N];
void addedge(int u,int v)
{
edge[tot].to=v;
edge[tot].nxt=first[u];
first[u]=tot++;
}
void init()
{
tot=0;
memset(first,-1,sizeof(first));
}
int uN;
int Mx[N],My[N];
int dx[N],dy[N];
int dis;
bool used[N];
bool SearchP()
{
queue<int> q;
memset(dx,-1,sizeof(dx));
memset(dy,-1,sizeof(dy));
for(int i=1;i<=uN;i++)
if(Mx[i]==-1)
{
q.push(i);
dx[i]=0;
}
dis=INF;
while(!q.empty())
{
int u=q.front();
q.pop();
if(dx[u]>dis) break;
for(int i=first[u];i!=-1;i=edge[i].nxt)
{
int v=edge[i].to;
if(dy[v]==-1)
{
dy[v]=dx[u]+1;
if(My[v]==-1) dis=dy[v];
else
{
dx[My[v]]=dy[v]+1;
q.push(My[v]);
}
}
}
}
return dis!=INF;
}
bool dfs(int u)
{
for(int i=first[u];i!=-1;i=edge[i].nxt)
{
int v=edge[i].to;
if(!used[v]&&dy[v]==dx[u]+1)
{
used[v]=true;
if(My[v]!=-1&&dy[v]==dis) continue;
if(My[v]==-1||dfs(My[v]))
{
My[v]=u;
Mx[u]=v;
return true;
}
}
}
return false;
}
int MaxMatch()
{
int res=0;
memset(Mx,-1,sizeof(Mx));
memset(My,-1,sizeof(My));
while(SearchP())
{
memset(used,false,sizeof(used));
for(int i=1;i<=uN;i++)
if(Mx[i]==-1&&dfs(i)) res++;
}
return res;
}
char g[610][610];
int id[610][610];
int main()
{
int n,T,kase=0;
scanf("%d",&T);
while(T--)
{
init();
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%s",g[i]+1);
memset(id,-1,sizeof(id));
int cnt=1;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(g[i][j]=='#'&&(i+j)%2==0)
id[i][j]=cnt++;
uN=cnt-1;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(g[i][j]=='#'&&(i+j)%2==1)
{
int t=cnt++;
for(int k=0;k<4;k++)
{
int ni=i+DX[k];
int nj=j+DY[k];
if(id[ni][nj]!=-1) addedge(id[ni][nj],t);
}
}
printf("Case %d: %d\n",++kase,MaxMatch());
}
return 0;
}